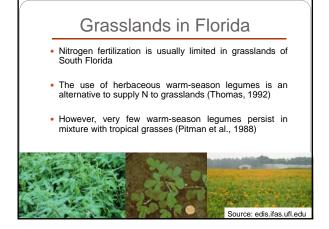


Outline

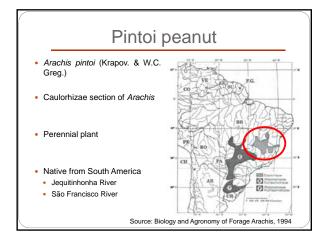
Introduction

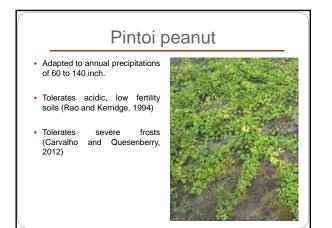

- Pintoi peanut (Arachis pintoi Krapov. & W.C. Greg.)
- Objectives

Research Projects

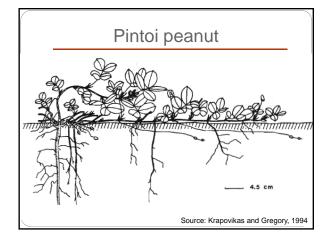
- Pintoi peanut grazing management
- Soil organic C dynamics in pintoi peanut-bermudagrass mixtures
- Pintoi peanut-bahiagrass establishment

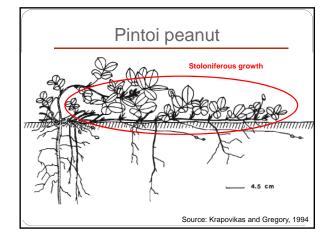
Conclusions

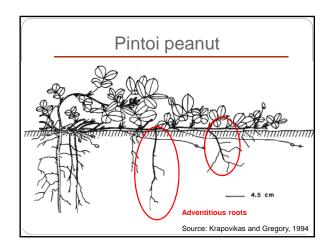


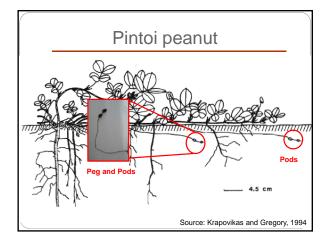


- · Pintoi peanut has become popular among scientists and producers:









- Herbage accumulation in different locations:
 - Africa (Stür and Ndikumana, 1994)
 - Herbage accumulation ranged from 0.3 to 2.3 ton/ac
- South America (Pizarro and Rincón, 1994)
 Annual herbage accumulation ranging from 3.0 to 5.8 ton/ac
- Nutritive value:
- Crude protein ranging from 13.0 to 18.0 % (Rincón et al., 1992)
- Average IVDOM of 67.0 % (Carvalho and Quesenberry, 2012)

- Most pintoi peanut research has been conducted in Central and South America and Australia
- Information about the use of pintoi peanut in North America is limited

Pintoi peanut

- Establishment:
 - Propagated by seeds and vegetative material (Carvalho and Quesenberry, 212)
 - Seeds are usually expensive with limited availability (Cook et al., 1994)
- Slow establishment (Cook et al., 1994; Carvalho and Quesenberry, 2012)

Pintoi peanut

- Use of N on the establishment:
 - N fertilization up to ~50 lb/ac may increase pintoi peanut above ground biomass (Thomas, 1994)
 - However, research evaluating such effect in grass-legume mixtures is scarce

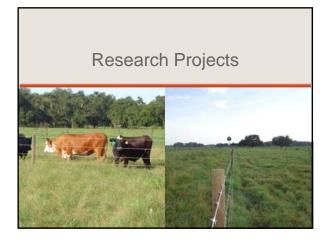
- Establishment of pintoi-grass mixtures:
- Greater number of studies on pintoi peanut-palisadegrass mixtures (Valentin et al., 2002)
- Literature about simultaneously seeding pintoi peanut and grasses has not been found

Pintoi peanut

 Harvest/grazing management:

- Tolerates short stubble heights (2-4 inch.) (Sinclair et al., 2007)
- In grass-legume mixtures, pintoi peanut proportion increases with greater grazing intensities (Ibrahim and 't Mannetje, 1998)

Pintoi peanut


- Impact on soil carbon:
 - Recently, more importance has been given to carbon mitigation strategies in agriculture
 - Legumes have the potential to increase soil organic carbon content (Dubeux et al., 2007)
 - Mosquera et al. (2012) found that pintoi peanutgrass mixtures had greater SOC concentration than grass monoculture (1.9 vs 1.7%)


- There is a demand for a persistent, perennial, warmseason legume which can be established by seeds
- Few studies were conducted with pintoi peanut in Florida (Carvalho and Quesenberry, 2009; 2012)
- Studies are necessary to evaluate effective establishment and management practices to assure pintoi peanut persistence and productivity

Objective

• To evaluate management practices to improve the establishment, productivity and nutritive value of pintoi peanut in South Florida

Objectives

• To evaluate the persistence, productivity and nutritive value of bermudagrass and pintoi peanut mixtures as affected by stubble height

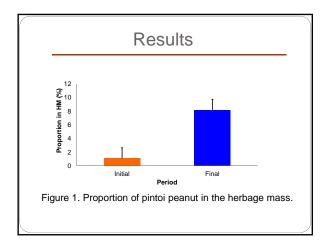
Hypothesis

- Pintoi peanut will persist in mixture with bermudagrass
- Shorter stubble height will increase pintoi peanut in the mixture
- Mixed swards will have greater productivity and nutritive value

- UF/IFAS Range Cattle Research and Education Center, Ona-FL
- Jiggs pastures were overseeded with 12 lb/ac of pintoi peanut seeds in June of 2013
- Pastures were fertilized with 12 lb P and 45 lb K/ac on May 2014
- Experimental period: June to October of 2014 and 2015

- Treatments were the split-plot design of:
 <u>Sward type (main plots)</u>: bermudagrass pastures as monocultures or overseeded with pintoi peanut
 - Stubble height (subplots): stubble heights of 6- or 10-in.
- Randomized complete block design with 4 replicates
- Experimental units were mob stocked with 28-d resting periods

Material and Methods


- Botanical composition
- · Proportion of pintoi peanut in the herbage mass
- Initial and final
- Herbage accumulation rate (HAR)

• Nutritive value

- Samples clipped at target stubble heights
- CP
- IVDOM

Results

- There was no effect of stubble height on proportion of pintoi in HM (4.7%; *P* > 0.62):
 - Reduced pintoi productivity
 - Canopy architecture of companion grass

	Resul	tS			
Table 1. Effect of accumulation rat			on herbage		
a 1/		Nutriti	Nutritive value		
Sward type	HAR	СР	IVDOM		
	lb/ac/d	(%		
Bermudagrass	25	10.3	43.7		
Bermudagrass /pintoi	17	9.8	42.4		
ŚE	19.0	2.8	3.8		
<i>P</i> -value [‡]	0.20	0.17	0.35		

	Resul	ts			
Table 1. Effect or accumulation rat	01		on herbage		
Ownersk frame		Nutriti	Nutritive value		
Sward type	HAR	СР	IVDOM		
	lb/ac/d	0	%		
Bermudagrass	25	10.3	43.7		
Bermudagrass /pintoi	17	9.8	42.4		
SE	19.0	2.8	3.8		
	0.20	0.17	0.35		

Objectives

 To evaluate the effect of overseeding pintoi peanut and stubble height on soil organic C and N pools of bermudagrass pastures

Hypothesis

- Overseeding pintoi peanut will increase soil organic C
 and N pools
- Increasing stubble height will increase soil organic C and N pools

- UF/IFAS Range Cattle Research and Education Center, Ona-FL
- Same experimental area of previous experiment
- Experimental period: June 2014 to October 2015

Material and Methods

- Treatments were the split-plot design of:
 <u>Sward type (main plots)</u>: bermudagrass pastures as monocultures or overseeded with pintoi peanut
 - Stubble height (subplots): stubble heights of 6- or 10-in.
- Randomized complete block design with 4 replicates
- Experimental units were mob stocked with 28-d resting periods

- Soil samples were collected in October 2015 (2 yr)
- Separated by depth:
 - 0-2 in.
 - 2-4 in.
 - 4-8 in.
- Soil OM fractionation was performed

- Particulate organic matter (POM) fractionation (Cambardella and Elliot, 1992):
- POM = organic material retained in a 53 μm sieve
- C-min = organic material passing through a 53 μm sieve

Material and Methods

- POM samples were fractionated by density, similar to described by Six et al. (1998):
 Solution of sodium iodide (1.8 g cm⁻³)
 - Light fraction (< 1.8 g cm⁻³): recently deposed, partially decomposed plant material
 - Heavy fraction (> 1.8 g cm⁻³): more advanced decomposition stage

- Soil organic C and N were analyzed by dry combustion as described by Silveira et al. (2014)
- Only light fraction results will be presented

Table 2. Light faction	C concer	tration co	ntent a	and
C/N ratio as affected		,	intoint, t	
B	Swar	P-value	SE	
Response variable	Bermuda.	Berm./pintoi	P-value	SE
0-5 cm layer				
LFC [†] concentration (%)	27.7	30.7	0.05	0.6
LFC content (ton ac ⁻¹)	3.5	4.3	0.15	0.2
LFC C/N ratio	13.7	14.4	0.11	0.2
5-10 cm layer				
LFC concentration (%)	21.0	22.3	0.51	1.2
LFC content (ton ac ⁻¹)	2.1	2.4	0.28	0.1
LFC C/N ratio	13.5	14.0	0.43	0.4
10-20 cm layer				
LFC concentration (%)	19.4	22.7	0.08	1.5
LFC content (ton ac-1)	3.6	4.5	0.15	0.5
LFC C/N ratio	13.8	13.9	0.88	0.2

1	Results	2		
Table 2. Light faction C/N ratio as affected		,	ontent, a	and
Desmanas variable	rd type	P-value	SE	
Response variable	Bermuda.	Berm./pintoi	P-value	SE
0-5 cm layer			_	
LFC ⁺ concentration (%)	27.7	30.7	0.05	0.6
LFC content (ton ac ⁻¹)	3.5	4.3	0.15	0.2
LFC C/N ratio	13.7	14.4	0.11	0.2
5-10 cm layer				
LFC concentration (%)	21.0	22.3	0.51	1.24
LFC content (ton ac ⁻¹)	2.1	2.4	0.28	0.19
LFC C/N ratio	13.5	14.0	0.43	0.4
10-20 cm layer				
LFC concentration (%)	19.4	22.7	0.08	1.5
LFC content (ton ac-1)	3.6	4.5	0.15	0.56
LFC C/N ratio	13.8	13.9	0.88	0.2

Table 3. Light faction				, and	
C/N ratio as affected by stubble height. Stubble height					
Response variable	SH6	SH10	- P-value	SE	
0-5 cm layer					
LFC [†] concentration (%)	30.9	27.5	0.01	0.6	
LFC content (ton ac-1)	3.8	4.0	0.60	0.2	
LFC C/N ratio	14.2	13.9	0.23	0.2	
5-10 cm layer					
LFC concentration (%)	21.3	22.1	0.52	1.05	
LFC content (ton ac ⁻¹)	2.4	2.1	0.15	0.1	
LFC C/N ratio	13.6	13.9	0.37	0.3	
10-20 cm layer					
LFC concentration (%)	22.7	19.3	0.04	1.5	
LFC content (ton ac-1)	4.3	3.8	0.32	0.5	
LFC C/N ratio	13.9	13.7	0.57	0.25	

Table O. Liebt fastion	0			
Table 3. Light faction C/N ratio as affected				, and
	Stubbl	- <i>P</i> -value	SE	
Response variable	SH6	SH10	- P-value	9E
0-5 cm layer			_	
LFC [†] concentration (%)	30.9	27.5	0.01	0.6
LFC content (ton ac ⁻¹)	3.8	4.0	0.60	0.2
LFC C/N ratio	14.2	13.9	0.23	0.2
5-10 cm layer				
LFC concentration (%)	21.3	22.1	0.52	1.0
LFC content (ton ac ⁻¹)	2.4	2.1	0.15	0.1
LFC C/N ratio	13.6	13.9	0.37	0.3
10-20 cm layer				
LFC concentration (%)	22.7	19.3	0.04	1.5
LFC content (ton ac-1)	4.3	3.8	0.32	0.5
LFC C/N ratio	13.9	13.7	0.57	0.2

Objectives

 To evaluate the establishment parameters of pintoi peanut and bahiagrass seeded as monocultures or mixture

Hypothesis

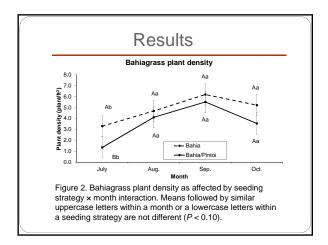
- Establishment parameters of pintoi peanut and bahiagrass in mixed planting will be similar to parameters of respective plants in monocultures
- Increasing N fertilization increases establishment
 parameters of both plants

- UF/IFAS Range Cattle Research and Education Center, Ona-FL
- Experimental period was from June to October of 2014 and 2015 (112 d/yr)
- Different areas for 2014 and 2015
- Preparation of the area:
 - Glyphosate 30 d before planting
 - Rototiller at 20 and 1 d before planting

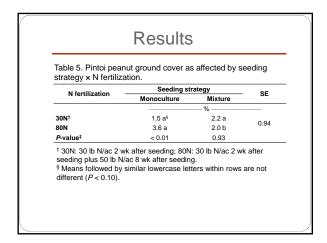
Material and Methods

- Treatments were the split-plot design of:
 <u>Seeding strategy (main plots)</u>: pintoi peanut monoculture, bahiagrass monoculture, or pintoi peanut-bahiagrass mixture
 - <u>N fertilization (subplots)</u>: 30 and 80 lb N/ac
- Randomized complete block design with 4 replicates

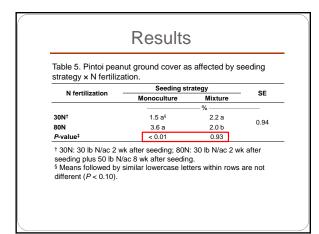
- Plant density (plants/ft²):
 Every 4 wk after planting
- Frequency (%):
- Every 4 wk after planting
- Ground cover (%):October of 2014 and 2015



peanut as affected by seeding strategy. Seeding strategy				
Response Variables	Monoculture	Mixture	SE	P-value
Bahiagrass				
Frequency (%)	38.7	33.7	5.67	0.14
Ground cover (%)	17.5	14.3	5.42	0.39
Pintoi peanut				
Density (plants/ft ²)	0.62	0.50	0.73	0.20
Frequency (%)	11.7	10.2	5.57	0.11



peanut as affected by seeding strategy.				
Response Variables	Monoculture	Mixture	SE	P-value
Bahiagrass				_
Frequency (%)	38.7	33.7	5.67	0.14
Ground cover (%)	17.5	14.3	5.42	0.39
Pintoi peanut				
Density (plants/ft ²)	0.62	0.50	0.73	0.20
Frequency (%)	11.7	10.2	5.57	0.11

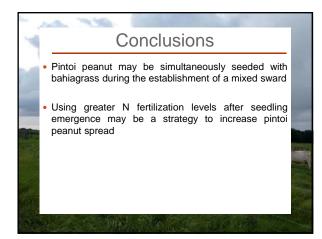


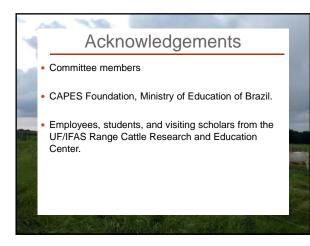
-		

Table 6. Establishment pa peanut as affected by N f		bahiagra	iss and	pintoi
Beenenee Veriables	N fertil	N fertilization		P-value
Response Variables	30N [†]	80N	- SE	r-value
Bahiagrass				
Density (plants/ft ²)	4.6	3.9	0.75	0.18
Frequency (%)	35.6	36.8	5.65	0.65
Ground cover (%)	15.7	16.1	5.42	0.83
Pintoi peanut				
Density (plants/ft ²)	0.5	0.6	0.07	0.11
Frequency (%)	9.9	12.0	5.55	0.02

Table 6. Establishment pa peanut as affected by N fe		bahiagra	iss and	pintoi
Response Variables	N fertil 30N [†]	ization 80N	SE	P-value
Bahiagrass				
Density (plants/ft ²)	4.6	3.9	0.75	0.18
Frequency (%)	35.6	36.8	5.65	0.65
Ground cover (%)	15.7	16.1	5.42	0.83
Pintoi peanut				
Density (plants/ft ²)	0.5	0.6	0.07	0.11
Frequency (%)	9.9	12.0	5.55	0.02

Conclusions


 Pintoi peanut is persistent when overseeded in bermudagrass pastures, but it did not respond to stubble height


100

-10.

- Due to reduced proportion, it did not have positive effects on forage productivity and nutritive value on early sward
- Better management practices should be developed and tested to increased proportion of pintoi in early mixed sward life

Conclusions Overseeding pintoi peanut increased only light fraction C and N concentration; however, it is an indicative of the potential for long-term increases in soil organic C and N content Grazing bermudagrass at 10-in. stubble height can potentially decrease soil organic C and N if applied in long periods

