

Introduction – Wildlife & Agriculture

Where does wildlife conservation and management occur?

38.4% of world's land under agriculture

26.3% is rangeland

In Florida, rangeland is 12 million ac or 1/3 of land area Florida's population may double by 2060

3 million ac ag, 2.7 million ac natural habitat converted

Wildlife conservation and management in agricultural lands is critical

Introduction – Why Amphibians?

Frogs Important prey Consume lots of insects Energy flow from aquatic to upland habitats

Salamanders Sirens and amphiumas

Global amphibian declines "Canaries in the coal mine"

Introduction - Wild Pig (Sus scrofa)

Introduction – Objectives

- 1. Wild pig diet
- 2. Drones and rooting
- 3. Impacts on salamanders
- 4. Impacts on tadpoles

Introduction - Study Site

Buck Island Ranch

10,500 ac ranch in Highlands Co., FL Full-scale commercial operation Over 600 wetlands Hundreds of miles of ditches Selected thirty-six 1-3 ac. seasonal wetlands Data collection from June 2016 - present

1 – Wild pig diet

Past studies have used DNA metabarcoding to examine seasonal shifts in diet (Bergmann et al. 2015) Studies have also examined wild pig diet using this technique (Robeson et al. 2017)

(Robeson et al. 2017) However, none have examined seasonal shifts in diet of wild pigs

Objectives:

- 1. Inventory diet items
- 2. Compare diet shifts across an entire year
- 3. Evaluate impacts on wetland species with an emphasis on amphibians

1 – Wild pig diet

March 2016 – February 2017 Ranch divided into 5 sampling areas ≥ 5 fecal samples every 2 months

	17 d_Viridiplantae; k_Streptophyta; p_rosids; c_Fagales; o_Fagaceae; f_; g_Quercus; s
4169	24 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Poaceae; f_Panicoldeae; g_Paspalum; s_Paspalum, notatum
2769	18 d_Viridiplantae; k_Streptophyta; p_; c_Caryophyllales; o_Amaranthaceae; f_; g_Alternanthera; s_
2490	51 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Poaceae; f_Oryzoideae; g_; s_
1278	16 d_Viridiplantae; k_Streptophyta; p_Pinidae; c_Pinales; o_Pinaceae; f_; g_Pinus; s_
1152	24 d Viridiplantae; k Streptophyta; p commellinids; c Poales; o Poaceae; f Panicoldeae; g ; s
1145	24 d_Viridiplantae; k_Streptophyta; p_commelinids; c_Commelinales; o_Commelinaceae; f_; g_Commelina; s_Commelina_erecta
989	36 d_Viridiplantae; k_Streptophyta; p_; c_Caryophyllales; o_Amaranthaceae; f_; g_Alternanthera; s_
859	51 d_Viridiplantae; k_Streptophyta; p_rosids; c_Fabales; o_Fabaceae; f_Papilionoideae; g_Trifolium; s
803	58 d_Viridiplantae; k_Streptophyta; p_asterids; c_Gentlanales; o_Rubiaceae; f_Rubioldeae; g_Spermacoce; s_Spermacoce_filituba
789	19 d_Viridiplantae; k_Streptophyta; p_commellivids; c_Arecales; o_Arecaceae; f_Arecoldeae; g_; s
660	13 d_Viridiplantae; k_Streptophyta; p_commellivids; c_Poales; o_Poaceae; f_Panicoideae; g_; s
619	79 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Poaceae; f_Panicoldeae; g_; s
581	73 d_ Viridiplantae; k_Streptophyta; p_ rosids; c_ Rosales; o_ Rosaceae; f_ Rosoldeae; g_; s_
516	11 d_Viridiplantae; k_Streptophyta; p_rosids; c_Fabales; o_Fabaceae; f_Papilionoideae; g_Desmodium; s
490	19 d_Viridiplantae; k_Streptophyta; p_asterids; c_; o_; f_; g_; s_
468	52 d_Viridiplantae; k_Streptophyta; p_; c_Caryophyllales; o_Połygonaceae; f_Polygonoideae; g_Persicaria; s_Persicaria_amphibia
314	50 d_Viridiplantae; k_Streptophyta; p_asterids; c_Apiales; o_Arailiaceae; f_; g_Hydrocotyle; s_
299	82 d_Viridiplantae; k_Streptophyta; p_; c_Caryophyllales; o_Amaranthaceae; f_; g_Alternanthera; s_
.244	55 d_Viridiplantae; k_Streptophyta; p_; c_Ceratophyllales; o_Ceratophyllaceae; f_; g_Ceratophyllum; s_Ceratophyllum_demersum
236	71 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Poaceae; f_Panicoldeae; g_; s_
217	18 d_Viridiplantae; k_Streptophyta; p_rosids; c_Malvales; o_Malvaceae; f_Malvoideae; g_Gossypium; s_Gossypium_hirsutum
203	25 d_Viridiplantae; k_Streptophyta; p_; c_; o_; f_; g_; s_
189	34 d_Viridiplantae; k_Streptophyta; p_rosids: c_Fagales; o_; f_; g_; s_
181	42 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Peaceae; f_; g_; s_
167	L5 d_Viridiplantae; k_Streptophyta: p_rosids: c_Myrtales: o_Onagraceae; f_; g_; s_
164	10 d_Viridiplantae; k_Streptophyta; p_commelinids; c_Poales; o_Peaceae; f_Panicoideae; g_Paspalum; s_
162	53 d_Viridiplantae; k_Streptophyta; p_commelinids; c_Commelinales; o_Pontederiaceae; f_; g_Pontederia; s_Pontederia_sp_A2-006
159	56 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Cyperaceae; f_Cyperoldeae; g_Fuirena; s_Fuirena; ciliaris
158	72 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Cyperaceae; f_Cyperoideae; g_Rhynchospora; s_Rhynchospora_brow
148	57 d_Viridiplantae; k_Streptophyta; p_commellinids; c_Poales; o_Poaceae; f_; g_; s
141	39 d_Viridiplantae; k_Streptophyta; p_rosids; c_Fabales; v_Fabaceae; f_Papillonoideae; g_; s_
139	81 d_Viridiplantae; k_Streptophyta; p_commelinids; c_Commelinales; o_Pontederiaceae; f_; g_Pontederia; s_Pontederia_cordata
128	55 d_Viridiplantae; k_Streptophyta; p_; c_; o_; f_; g_; s_

2 – Drones and rooting

- 1 Develop rooting analysis protocol Obtain UAV-derived imagery for study wetlands Mosaic imagery to create a single georeferenced image Perform spatial analyses on mosaicked image
- to quantify extent of rooted areas
- 2 Examine the impacts of swine removal on wetland damage across a dry season

2 – Drones and rooting

Drone – DJI Phantom 4 Map Pilot for DJI App Open app in field Input flight parameters

2 – Drones and rooting

Classify Raster

Train ArcGIS by classifying a subset of pixels Perform a Maximum Likelihood Classification analysis

2 – Drones and rooting

Calculate Extent of Rooting Damage

2 — Drones and rooting

- Fall 2016 Removal effort for pigs south of canal
 Removed ~ 100 pigs
- How quickly will pigs recolonize???
- Analyzed rooting across entire 2017 dry season • 11 (all) in the south, and 10 in the north

2 — Drones and rooting

Improved: mean = 16.23, sd = 17.62, min = 0.09, max =42.15 Semi-Native North: mean = 4.83, sd = 7.10, min = 0.00, max = 17.36 Semi-Native South: mean = 0.19, sd = 0.61, min = 0.00, max = 2.03

Conducted Kruskal-Wallis Test

3 – Impacts on salamanders

Does rooting in wetlands impact aquatic salamanders?

Trapped salamanders from 2016-2018 July-November (varied by conditions)

15 crayfish traps randomly placed in each study wetland, checked once a day for 5 days

Salamanders collected and returned to lab Measured, marked, and released

3 – Impacts on salamanders

> 7,500 trap checks over 3 years All taxa, not just salamanders, recorded Large data set on fish, snakes, turtles, and invertebrates

4 – Impacts on tadpoles

Is pig rooting indirectly affecting tadpole growth, survival, and species richness?

Dip netted 36 wetlands for tadpoles from 2016-2018

For each dip, the number of tadpoles and developmental stage were recorded

For non-rooted wetlands: 25 dips

For rooted wetlands: 50 dips (half in rooted areas) Dips in 4-16 inches of water

4 – Impacts on tadpoles

Other patterns – Squirrel Treefrogs (n = 983) Pine Woods Treefrogs (n = 155) Barking Treefrogs (n = 7) Southern Cricket Frogs (n = 341)

Future analyses – Incorporate water quality and vegetation data

Conclusions

Pig Diet

Eating amphibians, consuming salamanders in winter

Drones & Rooting

Developed efficient method to measure rooting Impacts on Salamanders

Factors impacting occupancy and detectability TBD Impacts on Tadpoles

Significant effect within wetland, landscape effect TBD

