

- \rightarrow Where I come from?
- \rightarrow Brazilian beef industry results
- \rightarrow Research interest and main results

Main goal \rightarrow Show beef cattle industry in Brazil and my Program's research in heat stress

Research interests and opportunities

- → Byproducts supplementation:
 → Grapes/wine industry; sweet potato; tannins; olive oil industry.
- → Supplements and additives to ruminants
 → yeast; methionine, enzymes.

\rightarrow Reproduction

 \rightarrow Timed AI programs; puberty and postpartum interval.

Heat stress

→The HS negatively impacts feed intake, milk yield, meat quality, physiological functions, and both male and female reproductive performance in cattle;

→ HS causes a reduction in feed intake, and it causes a change in animal's metabolism, because instead of using lipolytic pathways as source of glucose, heat-stressed animals increase skeletal-muscle protein catabolism, making amino acids playing an important role during this process (Baumgard and Rhoads, 2013);

→ Strategies to control HS can be either dietary supplementation like methionine, vitamin E, and betaine (Negrón-Pérez et al., 2019; Zhangh et al., 2020), as well as the provision of shade areas (Grandin, 2016; Izquierdo et al., 2023) aiming to mitigate the negative effects.

Heat stress issues

- \rightarrow Reduce feed intake;
- → Causes changes in animal's metabolism → Increase energy mobilization;

 \rightarrow Decrease fertility and reproductive performance.

(Baumgard and Rhoads, 2013)

Heat stress issues

Strategies to control:

 \rightarrow Dietary supplementation (methionine, vitamin E, and betaine);

 \rightarrow Shade areas (natural or artificial).

(Negrón-Pérez et al., 2019; Zhangh et al., 2020; Grandin, 2016; Izquierdo et al., 2023)

Heat stress

- \rightarrow Food production must double by 2050 to meet the demand of world's population;
- ightarrow Beef consumption is projected to increase in 110% during this time;
- → Around 70% of this increase is expected to come from subtropical and tropical regions of the planet;
- ightarrow This regions contain more than 80% of the world's cattle population;

 \rightarrow Most of these areas are characterized as humid and high temperatures (FAO, 2009; Cooke et al. 2020)

Researchs interests and opportunities

Heat Stress in beef cattle

Does it a real problem in Brazil? Can we modulate some responses? Can we improve reproductive performance?

Heat stress

 \rightarrow Methionine is an essential amino acid;

- → Studies in rats submitted to dietary methionine restriction showed several metabolic changes, such as increased body temperature, cell respiration rate, (Hasek et al., 2010; Patil et al., 2015);
- → Methionine helps in the protein synthesis, helping to prevent proteolysis (Del Vesco et al., 2015a) and participates in the process of heat sensitivity (Fricke et al., 2019).

Heat stress and reproductive efficiency

- → Majority of breeding season in Brazil is during spring/summer time
- \rightarrow Increase FTAI results

Freenary	rate at 30 and	60 days after TA	A of heifers f	rom control a	nd methionine e	
	Pregnancy Rate (%) D30		Р	Pregnan D	cy Rate(%) 960	P
	Control	Smartamine		Control	Smartamine	
Pregnancy	39.5 (19/48)	43.3 (22/52)	P>0.05	79.1 (38/48)	76.9 (40/52)	P>0.05
					Domii	nguez et al 2020

Pregnancy diagnosis	Methionine Group	Control Group	Р
30 davs	67.1% (47/70)	58.9% (43/73)	0.30
60 days	77.1% (54/70)	68.5% (50/73)	0.24
regnancy loss between 30 and 60 days	6.4% (3/47)	11.6% (5/43)	 .38

Internal Temperature									
Mathiaging Courses an	of Nelore Cows of C	ontrol and							
40	o ini burug uje ra	AI PIOLOLOI							
I HA KRADE	~	-	41.8						
X P40.05		-	TH IT						
agua 39.4	1	the contract	78 4						
A HZ	at poor	and from	AL N						
proceeding .	and the second	22	75 15						
ins their									
M.4	*******	XX1	72						
000 00 00 00 00 00 00 00 00 00 00 00 00	110011100111001110011100111001110011100111001100110010000	001	110						
	our of the day								
-Centrid -	-O-Stephasine 766								
Figure 2. Internal Temperature of Nelore Cows of	Control and Methionine C	Sroups and THI D	uring the FTAI Protocol						
		Pre	gnancy rate	s of CG a	nd MG duri	ng the fou	ur replicates	5	
-									
	Repetition	1		2		3		4	
	Repetition Group	1 Control	Methionine	2 Control	Methionine	3 Control	Methionine	4 Control	Methionine
	Repetition	1 Control 63.53%	Methionine 55.00%	2 Control 61.86%	Methionine	3 Control 67.74%	Methionine 67.82%	4 Control 66.04%	Methionine 65.63%
	Repetition Group Pregnancy Rate	1 Control 63.53%	Methionine 55.00%	2 Control 61.86%	Methionine 53.00%	3 Control 67.74%	Methionine 67.82%	4 Control 66.04%	Methionine 65.63%
	Repetition Group Pregnancy Rate	1 Control 63.53% (54/85)	Methionine 55.00% (55/100)	2 Control 61.86% (60/97)	Methionine 53.00% (53/100)	3 Control 67.74% (63/93)	Methionine 67.82% (59/87)	4 Control 66.04% (70/106)	Methionine 65.63% (63/96)
	Repetition Group Pregnancy Rate	1 Control 63.53% (54/85)	Methionine 55.00% (55/100)	2 Control 61.86% (60/97)	Methionine 53.00% (53/100)	3 Control 67.74% (63/93)	Methionine 67.82% (59/87)	4 Control 66.04% (70/106)	Methionine 65.63% (63/96) zquierdo (2021)

Next steps

→Better understanding about methionine role during the breeding season;
 →Overall understanding of heat stress effects in *Bos indicus* cattle in Brazil
 → Increase interaction with Dr. Moriel and his Program: have students

coming, more researches in Brazil, exchange information, working together.

