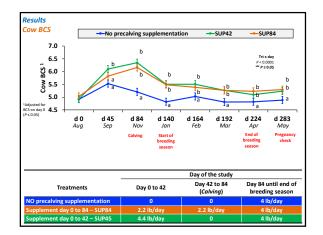
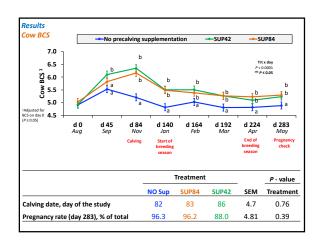
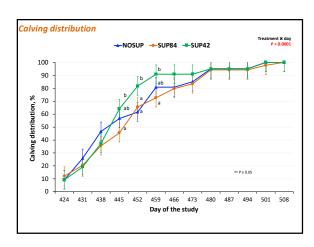
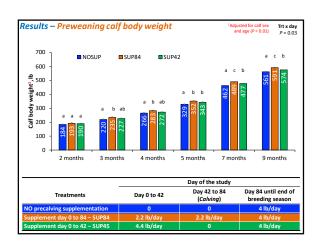

		First cal	f cows		
BCS at calving	# Cows	% pregnant 1st Al		BCS change	% pregnant 1st A
High BCS ≥ 6.00	142	47.4 a	\Rightarrow	Maintained	54.9ª
				Lost	43.0 ab
Moderate BCS				Gained	54.5 a
5.00 - 5.50	358	44.3 a	\longrightarrow	Maintained	53.9 a
			>	Lost	35.7 b
Low BCS ≤ 4.50	93	25.9 b	\Rightarrow	Gained	33.2 bc
				Maintained	19.4 ^c
SEM		4.4			6
P-value		0.002			0.0001

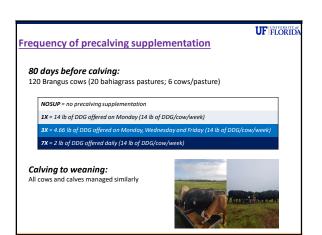


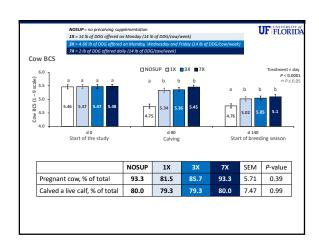


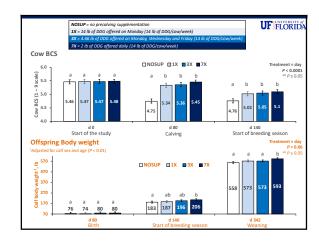

Study	Gestation trimester	Birth body weight	Preweaning growth	Post-weaning growth
Carah et al., 1975 (Exp. 1)	Third	+	+	Not reported
Corah et al., 1975 (Exp. 2)	Third	+	+	Not reported
Hough et al., 1990	Third	ND	ND	Not reported
Greenwood et al., 2005	Second + third	•		+
Banta et al., 2006	Third	ND	ND	ND
Stalker et al., 2006	Third	ND		ND
Stalker et al., 2007	Third	+	+	+
Martin et al., 2007	Third	ND		+
Larson et al., 2009	Third			+
Micke et al., 2010	First and/or second		Not reported	Not reported
Long et al., 2010	Early	ND	ND	
Funstan et al., 2010	Third	ND	+	ND
Underwood et al., 2010	Second	ND		+
Long et al., 2012	Early	ND	ND	ND
Mulliniks et al., 2012	Third	Not reported	ND	ND
Winterholler et al., 2012	Third			Not reported
Radunz et al., 2012	Second + third		+	ND
Bohnert et al., 2013	Third			ND
Shoup et al., 2015a	Third	ND	+	Not reported
Shoup et al., 2015b	Third	Not reported	Not reported	ND
Wilson et al., 2015	Third	ND	ND	ND
Summers et al. 2015a	Third	ND	Not reported	Not reported
Summers et al. 2015b	Third	Not reported	ND	+
Wilson et al., 2016a	Third	ND	ND	ND
Wilson et al., 2016b	Third		ND	ND
Kennedy et al., 2016	Third	+	Not reported	Not reported
Moriel et al., 2016	Third	ND	ND	ND
Marquez et al., 2017	Second or third	ND	ND	Not reported
Nepomuceno et al., 2017	Third	ND	ND	ND
McLean et al., 2018	First	ND		+/-
Maresca et al., 2018	Second + third	Not reported	Not reported	Not detected
Kennedy et al., 2019	Third	+	+	Not reported
Maresca et al., 2019	Second+third	+	ND	Not reported
Tanner et al., 2020	Second + third	ND	+	Not reported
Moriel et al., 2020	Third	ND	ND	+
Palmer et al., 2020	Third	ND		Not reported
Radriques et al., 2021	Second + third	+	ND	Not reported
ND = no statistical differ	ence	14 of 33 studies	17 of 32 studies	8 of 22 studies



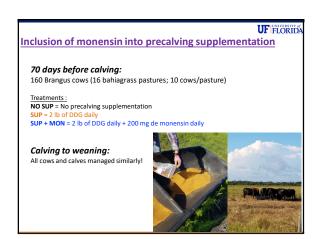
		Treatmen	it		P
ltem	NO SUP	SUP84	SUP42	SEM	Treat.
% calves born alive	98.1	94.3	96.4	2.55	0.58
Birth body weight, lb	79.3 ^a	82.4 ^b	81.9 b	3.70	0.08
			Day of the study		
Treatments	Day 0 to 4		Day 42 to 84 (Calving)	Day 8	34 until end o
NO precalving supplementation	0		0		4 lb/day
Supplement day 0 to 84 – SUP84	2.2 lb/da	v	2.2 lb/day		4 lb/day
Supplement day 0 to 42 – SUP45	4.4 lb/da		0		4 lb/day

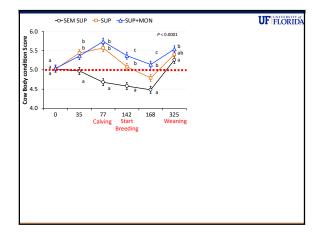

Steer innate and	humo	oral im	mune	resp	onse	
		Treatment			P -	value
Item	CON	SUP42	SUP84	SEM	Trt	Trt × Day
Plasma cortisol, µg/dL	2.13	2.29	2.15	0.16	0.76	0.79
Plasma haptoglobin, mg/mL	0.25	0.30	0.28	0.02	0.40	0.78
Serum BVDV-1						
Titers, log,	3.46	4.41	3.91	0.38	0.21	0.87
Seroconversion, % total	78	85	88	7.2	0.64	0.27
Serum PI3						
Titers, log2	2.53a	4.30b	3.73ab	0.44	0.07	0.51
Seroconversion, % total						
day 347	21a	63 ^b	54 ^b	11	0.32	0.01
day 389	80	82	83			

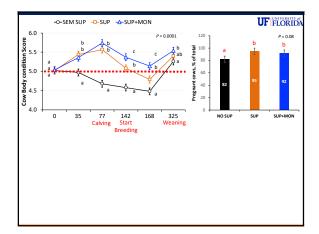

		Treatment			Р-	value
Item	CON	SUP42	SUP84	SEM	Trt	Trt × Day
Plasma cortisol, µg/dL	2.13	2.29	2.15	0.16	0.76	0.79
Plasma haptoglobin, mg/mL	0.25	0.30	0.28	0.02	0.40	0.78
Serum BVDV-1						
Titers, log ₂	3.46	4.41	3.91	0.38	0.21	0.87
Seroconversion, % total	78	85	88	7.2	0.64	0.27
Serum PI3						
Titers, log2	2.53a	4.30b	3.73ab	0.44	0.07	0.51
Seroconversion, % total						
day 347	21a	63b	54 ^b	11	0.32	0.01
day 389	80	82	83			

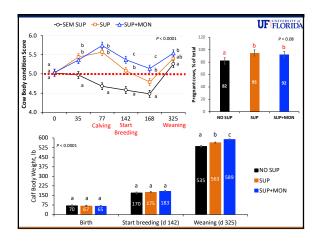

		Treatment		_	
Item	CON	SUP42	SUP84	SEM	P - value
Hot Carcass Weight, kg	337	338	338	5.5	0.98
Dressing Percent, %	59.7	60.5	59.8	0.30	0.12
12th rib fat thickness, cm	1.77	1.69	1.62	0.089	0.49
Longissimus muscle area, cm²	79.2	80.8	80.7	1.58	0.74
KPH, %	2.92	2.62	2.67	0.13	0.20
Yield Grade	3.8	3.6	3.5	0.14	0.33
Marbling	521 ^a	570 ^b	545ab	15	0.07
Average choice, %	5 ^a	36 ^b	17 ^{ab}	9.3	0.10
Low choice, %	72	46	58	10	0.17
Select, %	23	19	25	8	0.87

		Treatment			
Item	CON	SUP42	SUP84	SEM	P - value
Hot Carcass Weight, kg	337	338	338	5.5	0.98
Dressing Percent, %	59.7	60.5	59.8	0.30	0.12
12th rib fat thickness, cm	1.77	1.69	1.62	0.089	0.49
Longissimus muscle area, cm²	79.2	80.8	80.7	1.58	0.74
КРН, %	2.92	2.62	2.67	0.13	0.20
Yield Grade	3.8	3.6	3.5	0.14	0.33
Marbling	521 ^a	570b	545ab	15	0.07
Average choice, %	5 ª	36 ^b	17 ^{ab}	9.3	0.10
Low choice, %	72	46	58	10	0.17
Select, %	23	19	25	8	0.87









FETAL PROGRAMMING Additives: Monensin

UF FLORID

Impacts of maternal precalving nutrition (No Supp. vs. Supp.) on body condition score (BCS) and reproduction of cows and growth and immune response of their calves (studies¹ at the Range Cattle REC; Ona, FL)

	Study	1	Study	y 2 Stu		3	Study 4	
	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.
Cow BCS start of the study	5.7	5.7	5.5	5.5	5.3	5.4	5.0	5.0
Cow BCS at calving								
Pregnancy rate, %								
Calf weaning weight, lb								
Response to vaccination, %								

 $^{\rm ab}$ Means without a common superscript differed (P < 0.05).

*Study 1 = 0 or 2.2 lb/day of molasses + urea for 57 days before calving (Moriel et al., 2020).

*Study 2 = 0 or 2.2 lb/day of molasses - urea for 47 days before calving (Palmer et al., 2020).

*Study 3 = 0 or 2.2 lb/day of molasses - urea for 47 days before calving (Palmer et al., 2020).

*Study 3 = 0 or 2.2 lb/day of dired distillers grains for 20 days before calving (Palmer et al., in preporation).

*Study 3 = 0 or 2.2 lb/day of dired distillers grains for 70 days before calving (Morolet et al., in preporation).

*In all studies, cox sand their calves were managed similarly from calving until call *warning. Calves were early weaned at 2 to 3 months of age in Study 1 and normally weaned at 8 to 9 months of age in Studies 2, 3, and 4.

UF FLORIDA

Impacts of maternal precalving nutrition (No Supp. vs. Supp.) on body condition score (BCS) and reproduction of cows and growth and immune response of their calves (studies¹ at the Range Cattle REC; Ona, FL)

	Study	/ 1	Study	2	Study	Study 3		/ 4
	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.
Cow BCS start of the study	5.7	5.7	5.5	5.5	5.3	5.4	5.0	5.0
Cow BCS at calving	5.8a	6.1 ^b	5.0ª	5.4 ^b	5.2ª	5.8b	4.7a	5.6b
Pregnancy rate, %								
Calf weaning weight, lb								
Response to vaccination, %								

ab Means without a common superscript differed (P < 0.05).

1 Study 1 = 0 or 2.2 lb/day of molasses + urea for 57 days before calving (Moriel et al., 2020).

Study 2 = 0 or 2.2 lb/day of molasses + urea for 47 days before calving (Moriel et al., 2020).

Study 2 = 0 or 2.2 lb/day of molasses + urea for 47 days before calving (Palmer et al., 2020).

Study 3 = 0 or 2.2 lb/day of fied stillsles grains for 20 days before calving (Moriel et al., in preporation).

Study 4 = 0 or 2.2 lb/day dried distilles grains for 70 days before calving (Moriel et al., in preporation).

In all studies, coxes and their calves were managed similarly from calving until call *wanning. Calves were early weaned at 2 to 3 months of age in Study 1 and normally weaned at 8 to 9 months of age in Studies 2, 3, and 4.

UF FLORIDA

Impacts of maternal precalving nutrition (No Supp. vs. Supp.) on body condition score (BCS) and reproduction of cows and growth and immune response of their calves (studies¹ at the Range Cattle REC; Ona, FL)

	Study	/ 1	Study	2	Study	3	Study	/ 4
	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.
Cow BCS start of the study	5.7	5.7	5.5	5.5	5.3	5.4	5.0	5.0
Cow BCS at calving	5.8a	6.1b	5.0ª	5.4 ^b	5.2ª	5.8 ^b	4.7a	5.6b
Pregnancy rate, %	91.7	94.4	78.5	75.8	96.2	96.3	82ª	95 ^b
Calf weaning weight, lb								
Response to vaccination, %								

 $^{\mathrm{ab}}$ Means without a common superscript differed (P < 0.05).

TSLMy 1 = 0 or 2.2 lb/day of molasses + urea for 57 days before calving (Moriel et al., 2020).

SLMy 2 = 0 or 2.2 lb/day of molasses + urea for 47 days before calving (Moriel et al., 2020).

SLMy 2 = 0 or 2.2 lb/day of molasses + urea for 47 days before calving (Palmer et al., 2020).

SLMy 3 = 0 or 2.2 lb/day of died distillers grains for 90 days before calving (Palmer et al., in preporation).

SLMY = 0 or 2.2 lb/day dried distillers grains for 70 days before calving (Moriel et al., in preporation).

In all sLudles, cows and their calves were managed similarly from calving until call fevaning. Calves were early weaned at 2 to 3 months of age in SLudly 1 and normally weaned at 8 to 9 months of age in SLudles 2, 3, and 4.

UF FLORIDA

Impacts of maternal precalving nutrition (*No Supp.* vs. *Supp.*) on body condition score (BCS) and reproduction of cows and growth and immune response of their calves (studies¹ at the Range Cattle REC; Ona, FL)

	Study	1	Study	y 2 Stud		3	Study 4	
	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.	No Supp.	Supp.
Cow BCS start of the study	5.7	5.7	5.5	5.5	5.3	5.4	5.0	5.0
Cow BCS at calving	5.8a	6.1b	5.0a	5.4b	5.2ª	5.8b	4.7ª	5.6b
Pregnancy rate, %	91.7	94.4	78.5	75.8	96.2	96.3	82ª	95 ^b
Calf weaning weight, lb	275a	295b	579ª	597b	561a	591 ^b	535a	563b
Response to vaccination, %	56.1ª	81.5b	-	-	21ª	54 ^b	-	-

 $^{\rm ab}$ Means without a common superscript differed (P < 0.05).

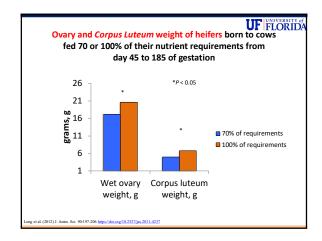
*Study 1 = 0 or 2.2 lb/day of molasses + urea for 57 days before calving (Moriel et al., 2020).

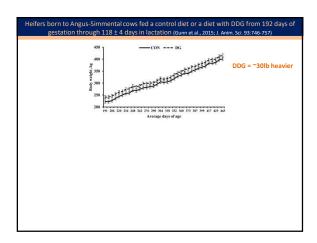
*Study 2 = 0 or 2.2 lb/day of molasses - urea for 47 days before calving (Palmer et al., 2020).

*Study 3 = 0 or 2.2 lb/day of molasses - urea for 47 days before calving (Palmer et al., 2020).

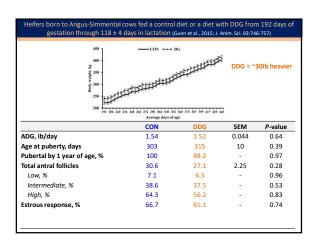
*Study 3 = 0 or 2.2 lb/day of dired distillers grains for 20 days before calving (Palmer et al., in preporation).

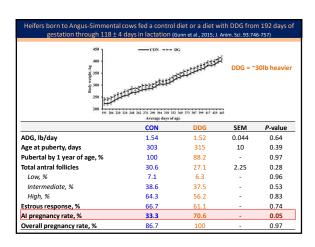
*Study 3 = 0 or 2.2 lb/day of dired distillers grains for 70 days before calving (Morolet et al., in preporation).


*In all studies, cox sand their calves were managed similarly from calving until call *warning. Calves were early weaned at 2 to 3 months of age in Study 1 and normally weaned at 8 to 9 months of age in Studies 2, 3, and 4.


UF FLORIDA Table 1 Time course of ovarian development for cattle, sheep, and pigs Age in Days Postconception Cattle⁴ Sheep⁶ Pigs^{7,8} Conception Mesonephros present Genital ridge present and being colonized by germ cells 35-36 23 18 Gonadal sex differentiation 39 32 27 40 75-80 Germ cell meiosis initiated 55 Maximum number of germ cells in gonad 110 50 75 First follicles formed 90-170 75 60-70 Most germ cells lost by atresia 150 90 100 First growing follicles observed 90-170 100 70 110 Most germ cells have completed meiosis 150 120 First antral follicles observed 250 135 60ª

Indicates days postpartum. Data from Refs. 4,6-8


Cushman and Perry (2019) Vet Clin Food Anim 35:321–330



Heifers born from cov	vs that rec	eived or no	t protein		
supplementation (1 lb			•	station	
	Martin et	al. (2007)	Funston et al. (2010)		
Item	NO Suppl	Suppl.	NO Suppl.	Suppl.	
Weaning weight, lb	456	467	496*	511*	
Adjusted 205-day BW, lb	480*	498*	469	478	
Age at puberty, days	334	339	366*	352*	
Pregnancy %	80*	93*	80	90	
Calving during the first 21 days, %	49*	77*	-	-	

Second and thire Low diet = 75% Moderate diet	d trimester: of maintenance = 100% of maintenance % of maintenance		Hereford, 1/4	l Pinzgauer, a	nd 1/4 F	ted Poll)		
	Diet 2	Diet 2 nd trimester / Diet 3 rd trimester						
Item	Low/High	Low/Low	Mod/High	Mod/Mod	SEM	P-value		
Cushman et al. (2014) Livestock	162:252-258 https://doi.org/10.1016/	/j.livsci.2014.01.033						

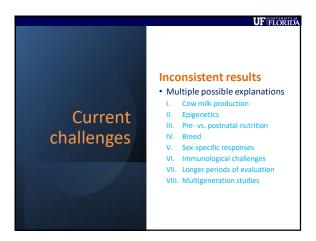
Low diet = 75% of maintenance Moderate diet = 100% of maintenance High diet = 125% of maintenance									
	Diet 2	nd trimester	/ Diet 3 rd trin	nester					
Item	Low/High	Low/Low	Mod/High	Mod/Mod	SEM	P-valu			
Birth weight, lb	80.6	82.2	80.4	83.7	1.5	0.40			
Preweaning ADG, lb/day	2.07	2.09	2.11	2.11	0.022	0.70			
Weaning weight, lb	419	421	423	428	5.9	0.74			
Post-weaning ADG, lb/day	1.70	1.67	1.67	1.67	0.022	0.89			
Breeding weight, lb	825	826	824	832	10.1	0.95			

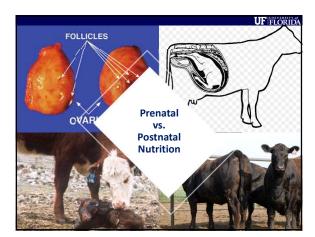
	Diet 2	Diet 2 nd trimester / Diet 3 rd trimester							
Item	Low/High	Low/Low	Mod/High	Mod/Mod	SEM	P-value			
Percent pubertal	96.4	95.1	92.0	96.6	3.2	0.73			
Age at puberty, days	316.5	312.4	315.6	320.5	4.1	0.60			
Antral follicle count	22.8	22.0	22.6	21.4	0.7	0.50			
Percent pregnant	85.5	89.9	92.0	88.5	2.1	0.23			

	gh Low	Low/Low Mod/Hi		Mod/Mod	SEM	P-value	
5.8	:	5.9	5.9	5.9	0.1	0.93	
5.6 a		5.7 ^a	6.0 b	6.1 b	0.1	0.04	
6.0 b 5		5.5 a	6.2 b	6.0 b	0.2	0.04	
Diet 2 nd trimester / Diet 3 rd trimester							
Item		Low/Lov	w Mod/High	Mod/Mod	SEM	P-valu	
Percent pubertal 96.4			92.0	96.6	3.2	0.73	
Age at puberty, days 31		312.4	315.6	320.5	4.1	0.60	
Antral follicle count		22.0	22.6	21.4	0.7	0.50	
Percent pregnant		89.9	92.0	88.5	2.1	0.23	
	5.6 6.0	5.6° 9.16 1.2 Diet 2 Low/High 96.4 sys 316.5	5.6 s 5.7 s 6.0 b 5.5 s Diet 2 nd trimeste	5.6 s 5.7 s 6.0 b	S.6° S.7° 6.0° 6.1°	S.6 s 5.7 s 6.0 s 6.1 s 0.1	

Second and third trimester: Low diet = 75% of maintenance Moderate diet = 100% of maintenance High diet = 125% of maintenance									
	Diet 2	Diet 2 nd trimester / Diet 3 rd trimester							
Item	Low/High	Low/Low	Mod/High	Mod/Mod	SEM	P-value			
Percent pubertal	96.4	95.1	92.0	96.6	3.2	0.73			
Age at puberty, days	316.5	312.4	315.6	320.5	4.1	0.60			
Antral follicle count	22.8	22.0	22.6	21.4	0.7	0.50			
Percent pregnant	85.5	89.9	92.0	88.5	2.1	0.23			
Calving percentage	81.5 a	82.5 a	90.0 b	82.0 a	2.1	0.06			
Calved first 21 days, %	51.5 b	42.0 a	55.1 b	40.3 a	2.6	0.004			
Calf birth weight, lb	68.9	70.9	69.6	68.7	1.32	0.71			

Study	Gestation trimester	Birth body weight	Preweaning growth	Post-weaning growth
Corah et al., 1975 (Exp. 1)	Third	+		
Carah et al., 1975 (Exp. 2)	Third	+		
Hough et al., 1990	Third	ND		
Greenwood et al., 2005	Second + third	+		
Banta et al., 2006	Third	ND		
Stalker et al., 2006	Third	ND		
Stalker et al., 2007	Third	+		
Martin et al., 2007	Third	ND		
Larson et al., 2009	Third	+		
Micke et al., 2010	First and/or second	+		
Long et al., 2010	Early	ND		
Funston et al., 2010	Third	ND		
Underwood et al., 2010	Second	ND		
Long et al., 2012	Early	ND		
Mulliniks et al., 2012	Third	Not reported		
Winterholler et al., 2012	Third	+		
Radunz et al., 2012	Second + third	+		
Bohnert et al., 2013	Third	+		
Shoup et al., 2015a	Third	ND		
Shoup et al., 2015b	Third	Not reported		
Wilson et al., 2015	Third	ND		
Summers et al. 2015a	Third	ND		
Summers et al. 2015b	Third	Not reported		
Wilson et al., 2016a	Third	ND		
Wilson et al., 2016b	Third	+		
Kennedy et al., 2016	Third	+		
Moriel et al., 2016	Third	ND		
Marquez et al., 2017	Second or third	ND		
Nepomuceno et al., 2017	Third	ND		
McLean et al., 2018	First	ND		
Maresca et al., 2018	Second + third	Not reported		
Kennedy et al., 2019	Third	+		
Maresca et al., 2019	Second+ third	+		
Tanner et al., 2020	Second+ third	ND		
Moriel et al., 2020	Third	ND		
Palmer et al., 2020	Third	ND		
Rodriques et al., 2021	Second + third	+		


Study	Gestation trimester	Birth body weight	Preweaning growth	Post-weaning growth
Corah et al., 1975 (Exp. 1)	Third	+		
Corah et al., 1975 (Exp. 2)	Third	•		
Hough et al., 1990	Third	ND		
Greenwood et al., 2005	Second + third	+		
Banta et al., 2006	Third	ND		
Stalker et al., 2006	Third	ND		
Stalker et al., 2007	Third	•		
Martin et al., 2007	Third	ND		
Larson et al., 2009	Third	•		
Micke et al., 2010	First and/or second	+		
Long et al., 2010	Early	ND		
Funstan et al., 2010	Third	ND		
Underwood et al., 2010	Second	ND		
Long et al., 2012	Early	ND		
Mulliniks et al., 2012	Third	Not reported		
Winterholler et al., 2012	Third	•		
Radunz et al., 2012	Second + third	+		
Bohnert et al., 2013	Third			
Shoup et al., 2015a	Third	ND		
Shoup et al., 2015b	Third	Not reported		
Wilson et al., 2015	Third	ND		
Summers et al. 2015a	Third	ND		
Summers et al. 2015b	Third	Not reported		
Wilson et al., 2016a	Third	ND		
Wilson et al., 2016b	Third			
Kennedy et al., 2016	Third			
Moriel et al., 2016	Third	ND		
Marquez et al., 2017	Second or third	ND		
Nepomuceno et al., 2017	Third	ND		
McLean et al., 2018	First	ND		
Maresca et al., 2018	Second + third	Not reported		
Kennedy et al., 2019	Third			
Maresca et al., 2019	Second + third	+		
Tanner et al., 2020	Second+third	ND		
Moriel et al., 2020	Third	ND		
Palmer et al., 2020	Third	ND		
Rodrigues et al., 2021	Second + third			



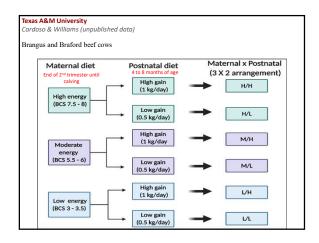
Study	Gestation trimester	Birth body weight	Preweaning growth	Post-weaning growth	
Corah et al., 1975 (Exp. 1)	Third	+	+	Not reported	
Corah et al., 1975 (Exp. 2)	Third	+	+	Not reported	
Hough et al., 1990	Third	ND	ND	Not reported	
Greenwood et al., 2005	Second + third	+	+	+	
Banta et al., 2006	Third	ND	ND	ND	
Stalker et al., 2006	Third	ND	+	ND	
Stalker et al., 2007	Third	+	+	+	
Martin et al., 2007	Third	ND	+	+	
Larson et al., 2009	Third	+	+	+	
Micke et al., 2010	First and/or second		Not reported	Not reported	
Long et al., 2010	Early	ND	ND	-	
Funston et al., 2010	Third	ND	+	ND	
Underwood et al., 2010	Second	ND	+	+	
Long et al., 2012	Early	ND	ND	ND	
Mulliniks et al., 2012	Third	Not reported	ND	ND	
Winterholler et al., 2012	Third	+	+	Not reported	
Radunz et al., 2012	Second + third		+	ND	
Bohnert et al., 2013	Third		+	ND	
Shoup et al., 2015a	Third	ND	+	Not reported	
Shoup et al., 2015b	Third	Not reported	Not reported	ND	
Wilson et al., 2015	Third	ND	ND	ND	
Summers et al. 2015a	Third	ND	Not reported	Not reported	
Summers et al. 2015b	Third	Not reported	ND	+	
Wilson et al., 2016a	Third	ND	ND	ND	
Wilson et al., 2016b	Third		ND	ND	
Kennedy et al., 2016	Third		Not reported	Not reported	
Moriel et al., 2016	Third	ND	ND	ND	
Marquez et al., 2017	Second or third	ND	ND	Not reported	
Nepomuceno et al., 2017	Third	ND	ND	ND	
McLean et al., 2018	First	ND		+/-	
Maresca et al., 2018	Second + third	Not reported	Not reported	Not detected	
Kennedy et al., 2019	Third		+	Not reported	
Maresca et al., 2019	Second+ third		ND	Not reported	
Tanner et al., 2020	Second+ third	ND	+	Not reported	
Moriel et al., 2020	Third	ND	ND	+	
Palmer et al., 2020	Third	ND	+	Not reported	
Rodrigues et al., 2021	Second + third	+	ND	Not reported	
ND = no statistical difference	ence	14 of 33 studies	17 of 32 studies	8 of 22 studies	

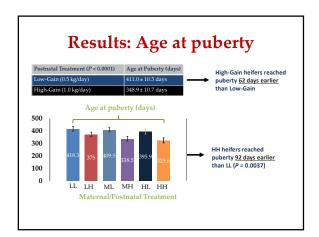
Study	Gestation trimester	Carcass weight	Marbling score	Choice %	Dressing %	Backfat thickness	Longissimus muscle area	Yield grade
Greenwood et al., 2005	Second + third	+	ND	Not reported	+	ND	ND	Not reported
Banta et al., 2006	Third	ND	ND	ND	Not reported	ND	ND	ND
Stalker et al., 2006	Third	ND	ND	ND	ND	ND	ND	ND
Stalker et al., 2007	Third	+	ND	Not reported	Not reported	ND	ND	ND
Larson et al., 2009	Third	+	+	+	Not reported	ND	ND	ND
Long et al., 2010	First	ND	ND	Not reported	ND	ND	ND	ND
Underwood et al., 2010	Second	+	ND	Not reported	Not reported	+	Not reported	ND
Long et al., 2012	First	ND	Not reported	Not reported	ND	ND	ND	-
Radunz et al., 2012	Second + third	ND	-	ND	-	ND	ND	ND
Mulliniks et al., 2012	Third	ND	ND	ND	ND	ND	ND	ND
Bohnert et al., 2013	Third	ND	ND	ND	Not reported	ND	ND	ND
Mohrhauser et al., 2015	Second	ND	ND	Not reported	ND	+	ND	+
Wilson et al., 2015	Third	ND	ND	ND	Not reported	-	ND	ND
Shoup et al., 2015	Third	ND	ND	+	Not reported	ND	ND	ND
Summers et al., 2015	Third	ND	-	ND	Not reported	ND/-	ND	ND/-
Wilson et al., 2016	Third	ND	ND	Not reported	Not reported	ND	ND	ND
McLean et al., 2018	First	ND	ND	Not reported	ND	ND	ND	ND
Luebbe et al., 2019	Third	+	ND	Not reported	Not reported	+	ND	ND
Maresca et al., 2019	Second + third	ND	ND	Not reported	+	ND	+	Not reported

Immunological challenge in the feedlot

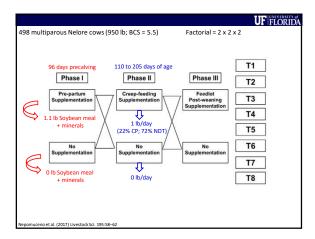
Effects of maternal supplementation of protein and energy during late gestation were detected for calf ADG immediately after a vaccination challenge against BRD pathogens but not during pre-vaccination period.

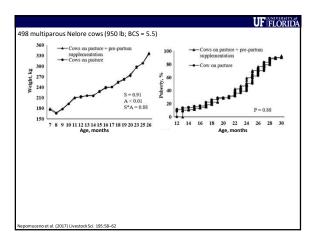
oriel et al. (2020) J. Anim. Sci. 98(5):1–12 doi:10.1093/jas/skaa123

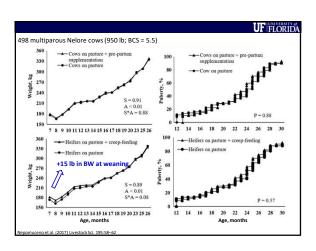

Treatments (starting 56 days precalving):

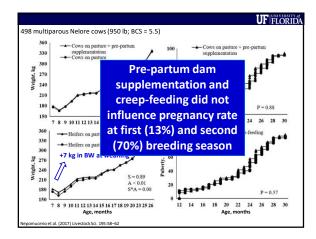

NOSUP = No Molasses + urea supplementation

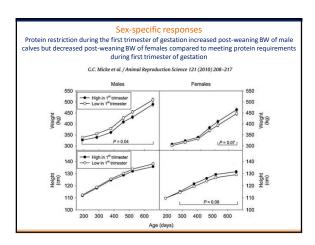
MOL = 2.2 lb/d of Molasses + urea (DM)


MOLMET = 2.2 lb/d of MOL + 18 g/d of methionine hydroxy analog (Alimet, Novus)


No	Molasses	Molasses	SEM	
Supplement		Methionine	SEIVI	P-value
1.28	1.26	1.37	0.064	0.48
1.85 a	2.00 b	2.18 b	0.068	0.02
1.41°	1.59 b	1.65 b	0.081	0.10
	1.28 1.85 a	1.28 1.26 1.85 a 2.00 b	1.28 1.26 1.37 1.85 a 2.00 b 2.18 b	1.28 1.26 1.37 0.064 1.85







Longer evaluation periods

- Opposite outcomes to offspring performance during shorter vs. longer periods of evaluation.
- Low precipitation vs. high precipitation during gestation
 - Decreased birth and weaning BW of calves
 - Increased longevity and percentage of females calving after 8 years of age (Beard et al., 2019)
- Multiple generations (F1 daughter and F2 granddaughters)
 - Laporta et al. (2020)
 - 10 years of consecutive data collection
 - Maternal heat stress during late gestation decreased milk production
 - Daughters during first, second and third lactations,
 - Granddaughters during their first lactation

Final messages

Maternal precalving supplementation

- Opportunity for beef producers to enhance offspring growth, immune function and reproduction
- Current research opportunities:
 - Less data on Bos indicus
 - Pre- vs. postnatal calf nutrition, sex-specific outcomes, and multiple generations beyond F1 offspring.

	-	UN	VE	RSI	TY ø	1
U	r	FI	O	R	ID	ŀ

