











UF FLORIDA 25% of fertilizer P inputs 1.3 million acres: 60% non-ag use M. Silveira, Soil & Water Science, University of Florida

6











|         |                             | UFIF                                               |
|---------|-----------------------------|----------------------------------------------------|
| 2017    | Year                        | 2018                                               |
|         | ka ha-1                     |                                                    |
| 6022 b  |                             | 4995 d                                             |
| 10500 a |                             | 10347 bc                                           |
| 9580 a  |                             | 11335 ab                                           |
| 10443 a |                             | 9441 c                                             |
| 10070 a |                             | ( 12178 a )                                        |
|         |                             |                                                    |
|         | 6022 b<br>10500 a<br>9580 a | kg ha <sup>-1</sup><br>6022 b<br>10500 a<br>9580 a |

15

**Forage Responses** UF FLORIDA b. 2018 Thermally-dried Class AA biosolids Aerabically-digested Class B biosolids ☐ Anaerabically-digested Class B biosolids ☑ Inorganic fertilizer Harvest 1 (August) Harvest 2 (October) Harvest 3 (December) Harvest event (Month) Lu. Yet al. 2020. Biosolids and biochar application effects on bahiagrass herbage accumulation and nutritive value. Agron. J. (In Press).

14

16

| <b>Bahiagrass Crude Protein and Digestib</b> | lity |
|----------------------------------------------|------|
|                                              |      |

UF | UNIVERSITY OF A

| Year    | Control  | Thermally-dried<br>Class AA biosolids | Aerobically-<br>digested Class B<br>biosolids | Anaerobically-<br>digested Class B<br>biosolids | Inorganic<br>fertilizer |
|---------|----------|---------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------|
|         | _        |                                       | CP+ (%) _                                     |                                                 |                         |
| 2017    | 8.8 c    | 10.1 b                                | 10.6 ab                                       | 10.7 a                                          | 10.2 ab                 |
| 2018    | 8.2 d    | 9.8 c                                 | 11.4 a                                        | 10.3 bc                                         | 10.4 b                  |
| P value | 0.005    |                                       |                                               |                                                 |                         |
|         |          |                                       | IVDOM (%                                      | S)                                              |                         |
| 2017    | 38.2 a   | 38.2 a                                | 37.2 a                                        | 37.1 a                                          | 37.9 a                  |
| 2018    | 34.0 c   | 37.5 a                                | 37.8 a                                        | 36.7 ab                                         | 35.3 bc                 |
| P value | < 0.0001 |                                       |                                               |                                                 |                         |

†Means represent the average across biochar treatments (with or without biochar) and 3 harvest events each year (n= 24). Same lowercase letters within rows are not different (P > 0.05).

## N recovery as affected by fertilizer source and year UF FLORIDA 2017 2017 2018 kg N ha-1.. 0 77 bA† 56 cA Thermally-dried Class AA biosolids 160 160 160 aA 185 aA 151 aB Anaerobically-digested Class B biosolids 160 160 167 aA 136 bB 160 160 163 aA 180 aA < 0.0001 †Means represent the average across biochar treatments (with or without biochar) and 4 replicates (n= 8). Same lowercase letters within columns and uppercase letters within rows are not different (P > 0.05). • 85 to 116% of applied PAN accumulated in bahiagrass above-ground tissue No differences between biosolids and inorganic fertilizer

17

19

| Conclusions – water quality study                                     |
|-----------------------------------------------------------------------|
| UF FLORIDA                                                            |
| ❖ Repeated application of biosolids at levels based on crop N         |
| requirement showed no impacts on N and P leaching compared            |
| with control treatments                                               |
| Biochar showed no benefit in mitigating N and P leaching              |
| Fluctuating water table favored N and P leaching.                     |
| ❖ Soils in this study exhibited high P-sorption capacity that prevent |
| significant P leaching                                                |
|                                                                       |
|                                                                       |

|                                                                                 |                |                  |                         | <b>UF</b> FLO     |
|---------------------------------------------------------------------------------|----------------|------------------|-------------------------|-------------------|
| Fertilizer source                                                               |                | otal P load      | Herbage P a             |                   |
|                                                                                 | 2017           | 2018             | 2017<br>kg P ha-1       | 2018              |
| Control                                                                         | 0              | 0                | 13 hA                   | 8 dB              |
| Thermally-dried Class AA biosolids                                              | 70             | 70               | 32 aA                   | 31 bcA            |
| Aerobically-digested Class B                                                    | 70             | ,0               | 30 aB                   | 34 abA            |
| biosolids                                                                       | 165            | 74               | 30 ab                   | 34 dbA            |
| Anaerobically-digested Class B                                                  |                |                  | 32 aA                   | 29 cA             |
| biosolids                                                                       | 82             | 107              |                         |                   |
| Inorganic fertilizer                                                            | 165            | 74               | 31 aB                   | 36 aA             |
| P value                                                                         |                |                  | 0.004                   |                   |
| †Means represent the average across                                             | biochar treatn | nents (with or w | ithout biochar) and 4 r | eplicates (n= 8). |
| <ul> <li>18 to 46% of applied P ac</li> <li>No differences between b</li> </ul> | cumulated      | in bahiagras     | s above-ground b        |                   |

18













## **Conclusions – Greenhouse Gas Emissions**

- Climatic factors (i.e. soil moisture, temperature) played a greater role on GHG emissions than fertilizer treatments
- Biosolids led to higher N<sub>2</sub>O emissions relative to inorganic fertilizer, probably caused by higher total N application rate associated with biosolids treatment (240 kg ha<sup>-1</sup>yr<sup>-1</sup> for biosolids vs. 160 kg ha<sup>-1</sup>yr<sup>-1</sup> for inorganic fertilizer)
- Biochar addition suppressed CO<sub>2</sub> emissions but limited effect was observed on N<sub>2</sub>O and CH<sub>4</sub> fluxes

21



## Conclusions

- ☐ Results demonstrated that biosolids applied at Nbase rate is a viable alternative for sustainable bahiagrass production while reducing the dependence on inorganic fertilizer
- ☐ Repeated application of either biosolids or inorganic fertilizer based on crop N requirement showed no impacts on water quality or GHG emissions
- ☐ Total N mass leached accounted for 11% of applied PAN for inorganic fertilizer vs. 2% for biosolids.

  Leachate P for inorganic fertilizer and biosolids were less than 1% of applied P.
- Climatic conditions (rainfall, water table level) had a greater impact on greenhouse gas emissions than fertilizer management
- ☐ Although biochar may increase soil carbon levels, it showed no agronomic or environmental benefits



- Florida Cattle Enhancement Board
- Florida Cattlemen's Association
- Yanyan Lu (PhD student)

22

- Cindy Holley (Biological Scientist)
- Staff and students at the Range Cattle REC
- H&H Liquid and Sludge Disposal, Inc







Maria Silveira Email: mlas@ufl.edu Phone: (863) 735-1314

23 24