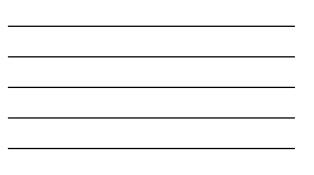
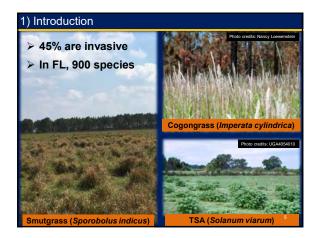


Presentation Outline

- 1) Introduction
- 2) Smutgrass background
- 3) Why is smutgrass a serious concern?
- 4) Why effective management is difficult to achieve?
- 5) Rainfall studies and conclusions



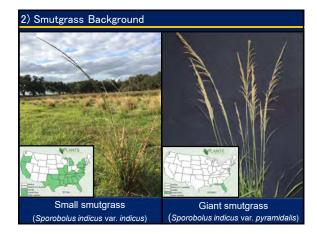

1) Introduction

- > ≈ 42% of U.S. land area
- \succ ≈ 33% of FL land area
- ➢ 790,000 calves in 2017
- Forages and cattle nutrition
- Efficient use forage
- ➢ Bahiagrass (P. notatum)

2) Smutgrass Background

- Smutgrass is a member of the *Sporobolus* genus
- Diverse range of perennial, annual, tussock and creeping species

2) Smutgrass Background


- Many species have spread throughout the globe
- Important agronomic and environmental concern in many parts of the world (e.g., USA, Australia and Brazil)

2) Smutgrass Background

- \succ Smutgrass species problematic in the USA:
- Found in planted grass pastures, roadsides and disturbed waste places
- $\boldsymbol{\diamondsuit}$ There are 21 species of which two were introduced (Asia)
- o Small smutgrass (*Sporobolus indicus*)
- o Giant smutgrass (*Sporobolus indicus* var. *pyramidalis*)

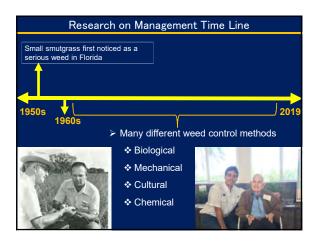
3) Why is smutgrass a serious concern?

A. It is an invasive weed

- Successfully establish, become naturalized, and spread to new natural habitats apparently without further assistance from humans
- Category I (list of nuisance plants, FLEPPC 2019)

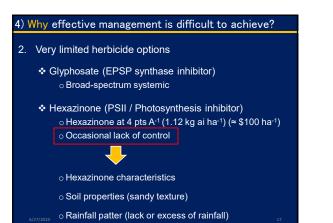
3) Why is smutgrass a serious concern?

- B. Impacts on forage production
- Decreases pastures production potential
- Medium and high infestations reduced bahiagrass monthly HM by 51 to 87%, respectively
- ✤ Estimated to cost \$25 to \$50 acre⁻¹ depending on density

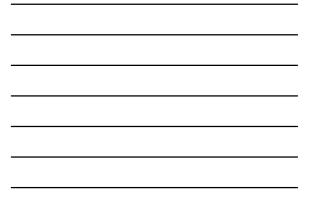


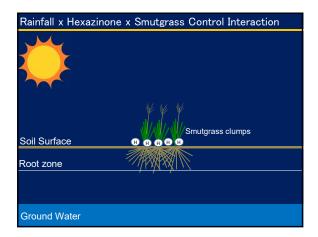
3) Why is smutgrass a serious concern?

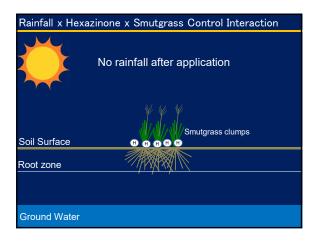

> Therefore:

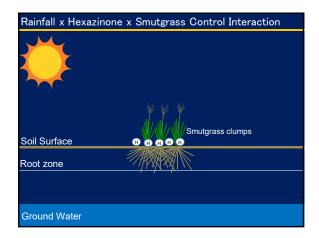

Smutgrass management is a major component of successful forage-based livestock operation systems

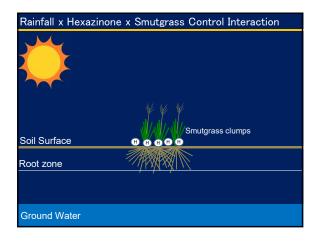

Easier said than done though ….

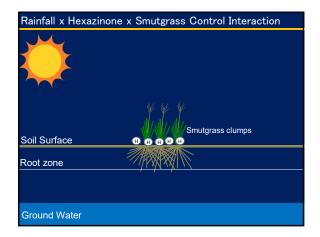


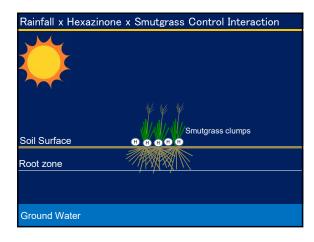












4) Why effective management is difficult to achieve?

- > Therefore, it is necessary to:
 - Develop new management strategies to effectively control giant smutgrass
 - Optimize the use hexazinone by investigating how rainfall impacts its efficacy

 $_{\odot}\,\text{Greenhouse}$ and field experiments

Rainfall Effects on Giant Smutgrass Control with Hexazinone Greenhouse Study

5) Rainfall Studies – Greenhouse

> Objectives:

To determine the effects of increasing simulated rainfall volumes on hexazinone activity at two different rates

≻Hypothesis:

Lack or excessive amounts of simulated rainfall will decrease hexazinone activity, regardless of the rate

≻Goal:

To determine this optimum rainfall range for peak of hexazinone activity

5) Greenhouse Rainfall Study - Materials & Methods

- > Greenhouse experiments were conducted three times
- > Pots were filled with soil collected at site (Placid fine sand)
- ➢ Plants were grown in the greenhouse for ≈ 2.5 months

5) Greenhouse Rainfall Study - Materials & Methods

- > Treatments included the 2 x 7 factorial arrangement of:
 - ✤ Two hexazinone rates:

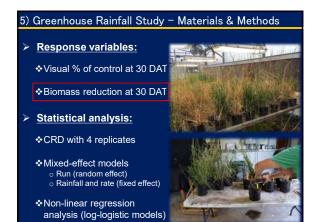
 $_{\odot}\,2$ and 4 pts $A^{\text{-1}}\,(0.56$ and 1.12 kg ai ha^{\text{-1}})

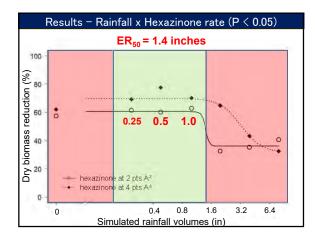
- ◆ <u>Seven simulated rainfall volumes:</u>
 0; 0.25; 0.5; 1.0; 2.0; 4.0 and 8.0 inches
- Single pots were considered the experimental unit

32

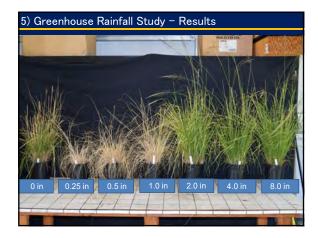
5) Greenhouse Rainfall Study - Materials & Methods

- > Herbicide treatment application:
 - CO₂ pressurized back-pack sprayer; 3.0 miles h⁻¹
 - ✤ 20 gal/A (187 L ha⁻¹)

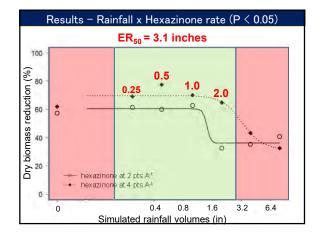


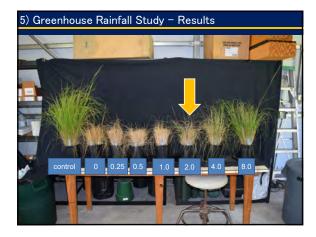

5) Greenhouse Rainfall Study - Materials & Methods

- Simulated rainfall treatment application:
 - 2 hours after herbicides application
 - Tlaloc 3000 rainfall simulator
 - ✤ 2.8 x 2.3 m² area
 - Central nozzle at 3.0 m above



5) Greenhouse Rainfall Study – Materials & Methods				
Pots were allowed to drain for 3-h before returning				
> All pots were sub-irrigated with 60 ml of water as needed				





5) Greenhouse Rainfall Study - Conclusions

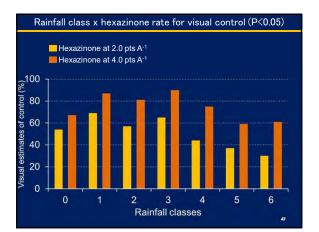
- > These data indicated that:
- 1. Rainfall after hexazinone application did impact hexazinone activity, regardless of the rate
- 2. Hexazinone peak of activity appears to occur from:
 - ✤ 0.25 to 1.0 inches for hexazinone at 2.0 pts A⁻¹
 - ✤ 0.25 to 2.0 inches for hexazinone at 4.0 pts A⁻¹
- 3. What about natural rainfall effects in the field?

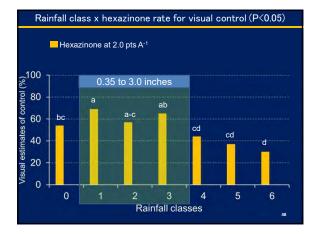
5) Field Rainfall Study - Materials & Methods > Field experiments were conducted at the RCREC in 2017, and repeated in 2018 > Rainfall data-logger (RainWise RainLog TM 2.0)

5) Field Rainfall Study – Materials & Methods

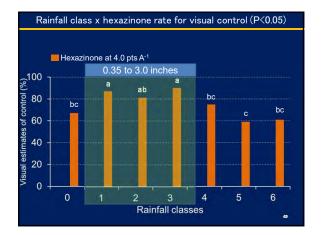
- Twenty-two weekly applications were performed from May until November with a tractor-mounted sprayer
- Flat fan nozzles • 25 gal A⁻¹ (233 L ha⁻¹) 2 and 4 pts A⁻¹ 2 and 4 pts A⁻¹ 5 and 4 pts A⁻¹

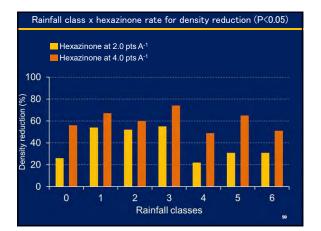
5) Field Rainfall Study - Materials & Methods

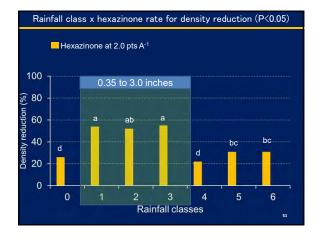

- Twenty-two weekly applications were performed from May until November with a tractor-mounted sprayer
- <u>Visual estimates of control</u> 35 DAT and measuring the <u>% of</u> <u>density reduction (6 to 11 MAP)</u>.

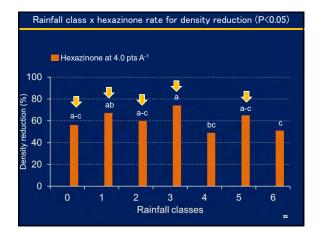

5) Field Rainfall Study – Materials & Methods

- Twenty-two weekly applications were performed from May until November with a tractor-mounted sprayer
- <u>Visual estimates of control</u> 35 DAT and measuring the <u>% of</u> <u>density reduction (6 to 11 MAP).</u>
- Based on the rainfall amount recorded during the first 7 DAT, a rainfall class was designated to each EU


	Analysis of covariance	Rainfall class	Rainfall recorded 7 DAT
		0	0 to 0.35 in
	 Rainfall class and rate (fixed effects) 	1	> 0.35 ≤ 1.0 in
	o Year and block (random effects) Fisher's LSD (P ≤ 0.05)	2	> 1.0 ≤ 2.0 in
		3	> 2.0 ≤ 3.0 in
		4	> 3.0 ≤ 4.0 in
		5	> 4.0 ≤ 5.0 in
		6	> 5.0 in







- > Application on 08/11/2017 fb 4.3 in 7 DAT (avg 84% control)
- Greatest rainfall event recorded during this period was 1.1 in on the 6th day.

Rainfall Studies Main Findings and Implications

- > Management with hexazinone (4 pts A⁻¹) (1.12 kg ha⁻¹)
- > Hexazinone dynamic mobility in sandy soils
- Peak of activity appears to occur when followed by 0.35 to 3.0 inches 7 DAT
- > Ranchers should check the rainfall forecast
- > Several factors can still impact activity
- > Hexazinone should not be used as a single control tool
- Future research should be conducted over longer experimental periods and more locations

≻Thank you

Dr. Sellers

- Dr. Ferrell •
- Dr. Enloe
- Dr. Vendramini
- Dr. Moriel
- USDA-NIFA-CARE grants
- Program Florida Cattlemen Enhancement Board
- All the people who helped with my research

06/11/2019

