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5 year study (USDA): 2014-2019

Density and demography, reproduction and survival.

* Uniquely marked individuals (captures)

* Capture-Resight Spatial Models (game cameras)

Spatial Ecology, movement, resource selection models

and interactions with livestock and at point sources

* GPScollars

* UHF proximity collar studies among cattle, hogs and
point sources

Population control BACI design

« Does this change interactions, space use by hogs?

* What effort is needed to remove hogs?

* What is the time to population recovery?

Disease sampling and identification

« Blood, feces, nasal, buccal, genital

* Focus on ARMs and viruses (torque teno and
circovirus to use in epidemiological models)

Aerial assessment of rooting damage

« Drone flights and analyses of rooting damage




Buck Island Ranch
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Study Location

Game Camera Deployment

44 Game Cameras, 1/km2
Deployed August 2015

o Continuously running since ~3.5 years
Maintained monthly

~ 100,000 images processed a month
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Trailer build for hog study

Needed for reduced use of anesthetics, ease of handling, and access for
taken samples from awake hogs

Lots of help and hard work
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Data Summary Information

© 772 Feral Hog Captures
© 302 unique marks deployed (~100 per year)

0 260 non-marked hogs removed during
removals

0 121 marked hogs removed during removals
o 89 recaptures, resampled and released

o > 4 million images taken (in Florida)
o~ 276,975 of wild hogs

© 111 GPS units deployed (30 minute fixes)
0 546,060 fixes obtained.

o Many early failures, short retention, water
damage
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Image Management

CPW Photo Warehouse - - z

COLORADO PARKS & WILDLIFE

* Microsoft Access Application e s e R |

* Archiving, summarizing, analyzing photos

Sftvare: COW phto Varehouse

* Double blind entry e

* Third party verification

* Module creation and management for out of
database identification (many uses at once)

* Tried and tested with many research projects

* Automated query functions to allow for data
management
* Automated query functions to allow for data
manipulation and format for analyses
+ Occupancy tables

+ Capture-recapture tables

* Excellent data management tool

CPW Photo Warehouse - o
Problems

* Too many photos for MS Access
* Overburdened within 1-3 months of data
collection
* Moved to SQL server platform requiring some changes
in code. Issue solved
* housed on USDA server access by secure login
only
* Unable to keep up with image classification
+ 100,000 images/month
200,000 IDs needed/month (double blind)
* Plus verification
* ~ 80hrs/wk fulltime
* 1.5 million images identified and verified over
3.5years. Not Enough
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APHIS National Feral Swine Program
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Camera Trapping Photo Viewer
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Stalled by ID process

* Currently 6.9 million images in database,
continual growth at 100,000/month

* Only, 1.5 million identified 3 years in!!!

me3ea

Machine Learning Process

o Supervised machine learning algorithms use training
examples to “learn” how to complete a task.

on our setting, we provided a set of animal images
already identified (1.5million) from camera traps of
different species and their labels (species identifiers)
to a deep neural network.

o We trained the model to identify species in training
images.

o Once a model is trained, it learns how to classify new
images that were not used for training.

Image classification

neuron
Inputs

Weights Non-linear Function

* I1to I3 are inputs in our Iy
case Red, Blue, Green

* In our species
classification setting, the
inputs to the network are
normalized Red, Green,
Blue (RGB) values of raw
pixels of image

* We then interpret the
output of the final layer as
the probability of the
presence of species in the
image.




The math you should know but don’t have to

* 0 = ReLu(wyly + wyl, + w3z + b) (eqn 1),
Output of neuron calculated based on red, green, blue

*L(P,Y)=—},;P;log(Y;) (eqn2)
Loss calculated = predicted result compared to actual identification
dL
* Wi = Wiinitial = 1 g (ean 3),
Weights adjusted to improve loss (L, eqn2) to best case scenario
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This has been set-up for you as an
R package, available in GitHub.

“Machine Learning for Wildlife
Image Identification in R”

ResNET multi-
neuron deep
learning network

Images used from
across the USA

* We used 3,741,656 classified images
to train and assess neural model
* California, Colorado, Florida,
South Carolina, Texas and
Canada
* 10% of each species retained for
testing model (374,273 images)

* 27 Species or groups able to trained
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Recall — ability of model to recognize species
in training dataset for that species

Recall

10° 10! 10°

10

Number of training images

() Correct classification by model

() Incorrect clasaficatnn by model

Model Guess  Confidence (%)
Wild pig 96.11
Canle 238
Empty 149
White-tailed déer <01
Moose 0l

Answer from human classifiers: Wild pig

Model Guess  Confidence (%)
Wikl pig

Canle 3127

Mouse 1693

Black bear 251

Bobeat 031

Answer from human classifiers: Cattle
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Model Confidence
Assign ment 20,000 - (@) Wild pig

10,000

* Very high confidence
achieved for most species

400 - (D) White-tailed deer

* But not every image is high

Frequency

* Use confidence to assess
what you will accept or 150 = (€)Corvidee
need further verification

T T T T T
00 02 04 06 [ 10

Model confidence in this species or group when it s in the image
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Machine learning to classify animal species in camera trap
images: Applications in ecology

Michael A, Tabak'? Mohammad S. Norouzzadeh® | David W. Wolfson' |

Steven J. Sweeney’ | Kurt C.Vercauteren® | Nathan P. Snow* Joseph M. Halseth*®
Paul A. Di Salvo' | JesseS.Lewis® | Michael D. White* | Ben Teton®

James C. Beasley’ | Peter E. Schlichting’ | Raoul K. Boughton® | Bethany Wight®

Eric S. Newkirk” | JacobS.Ivan® | Eric A. Odell’ | Ryan K.Brook'®

Paul M. Lukacs' | Anna K. Moeller'" | Elizabeth G. Mandeville”? | Jeff Clune’

Ryan S. Miller!

You don’t need to
understand neural
network mathematics
and architecture to run
the machine learning
module.

Go to github
https://rdrr.io/github/
mikeyEcology/MLWIC/f
/README.md
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