Natural Protein Can Help Get Thin Cows Bred

published in

The Peace River Farmer and Rancher

March - 2001

By Findlay Pate

UF/IFAS, Range Cattle REC

Riding along our south Florida roads this winter one of the things I have noticed is the thin condition of brood cow herds. The drought that started last spring prevented normal grass growth throughout the summer, and the cold, dry winter has devastated the quality of any stockpiled forage. Cows have lost considerable weight and condition and it is going to be very difficult to get these cattle to rebreed.

A few years ago Dr. Rob Kalmbacher and I conducted a study that used mature, lactating cows wintered on native range. Cows were fed on range 5 pounds/cow/day of a molasses supplement containing either urea or cottonseed meal. Supplements were fed from calving in December to the start of the breeding season. During the range period cows responded similarly to molasses supplements containing either urea or cottonseed meal. Cows fed both supplements lost an average of 125 pounds while grazing range and most were very thin going into the breeding season.

For the 90-day breeding season (March 1 to May 30) all cows were moved from range to bahiagrass pasture and fed 5 pounds/cow/day of a 20% crude protein molasses-cottonseed meal slurry. The overall pregnancy rate obtained was 83%, quite high for thin, lactating cows. Previous studies at Ona showed that lactating range cows either offered molasses or grazed on grass-clover pasture during the breeding season had pregnancy rates of 50 to 65%.

Further analysis of the pregnancy data showed that cows with condition scores of 2, 3, and 4 at the start of breeding had pregnancy rates equal to that of cows with condition scores of 5 or better. Thin cows also rebred as soon after calving as cows in good body condition.

We felt that the natural protein in the molasses slurry was responsible for the good reproductive performance of these thin, lactating cows. To confirm our theory Dr. John Arthington and I are conducting a study in which thin cows off native range are fed molasses supplements containing either urea or natural protein (feather meal and cottonseed meal) during the breeding season. In each of first two years of the study thin cows fed molasses with natural protein has had a much higher pregnancy rate than cows fed molasses with urea.
We will continue the above study for four to five years, but from what we have observed thus far, we feel that feeding natural protein instead of urea during the breeding season to thin, lactating cows, is very helpful to getting them rebred. This natural protein can be fed either in a molasses slurry or as a dry supplement.

For questions or comments regarding this publication contact Findlay Pate