	Jiggs Bermudagrass and Limpograss Responses to Potassium and Phosphorus Fertilization
	THE STATE OF THE S
	March 2016 Ona Report Webinar March 16, 2016
14	Maria Silveira, Soil Scientist UF/IFAS Range Cattle REC

- Involved in maintaining the water status of the plant and the opening and closing of its stomata
- Required for accumulation and translocation of newly formed carbohydrates
- Tissue levels ranging from 1 to 5% dry weight

- Adequate K supply is associated with:
 Resistance to disease and stress pressure
- Winter hardness
- Stand longevity

- Present in the soil as K* cationPlant availability is influenced by soil pH
- Weekly sorbed in soil colloids, particularly in coarse-texture soils
 Subjected to leaching

Soil Acidity	Soil pH	Fert	ilizer Efficienc	y (%)
		Nitrogen (N)	Phosphorus (P)	Potassium (K)
Extreme	4.5	30	23	33
Very strong	5.0	53	34	52
Strong	5.5	77	46	77
Medium	6.0	89	52	100
Neutral	7.0	100	100	100

Source: Jones, 2012

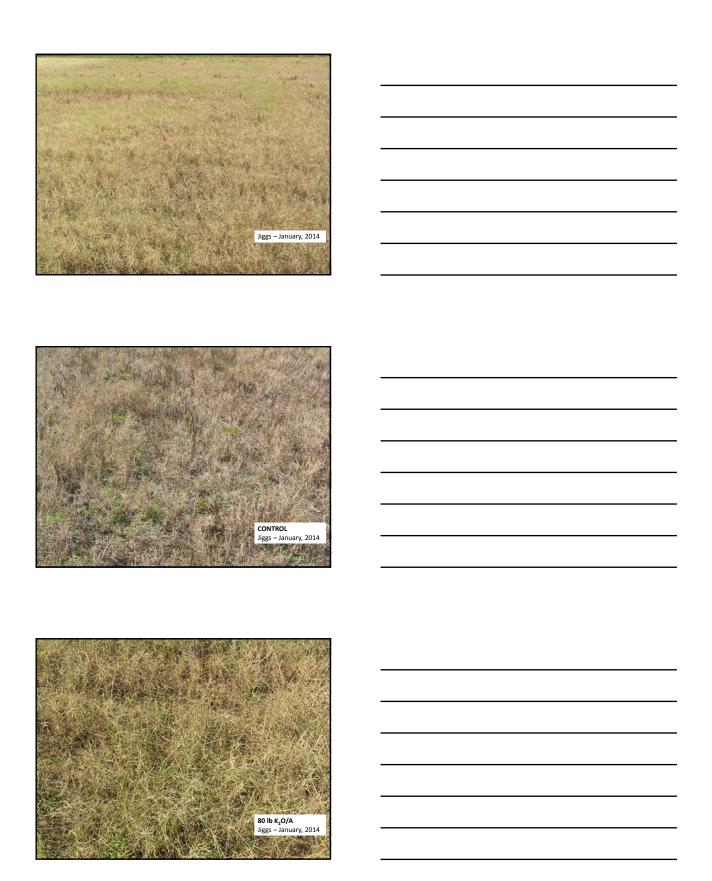
- Component of DNA and ATP ("energy unit" of plants)
 Catalyst in biochemical reactions, including the conversion of sun's energy into other compounds
- Tissue levels ranging from 0.1 to 0.5% dry weight

Adequate P supply is associated with: - Adequate root development

Forage Crop	Yield		Uptake (lb/A)	
	(T/A)	N	P ₂ O ₅	K₂O
Jiggs bermudagrass ¹	11	398	146	390
Coastal bermudagrass ²	8	368	96	400
Ona stargrass ¹	7	316	154	306
Floralta limpograss ¹	6	237	137	200
Bahiagrass ³	5	192	53	223
Perennial peanut ³	5	288*	55	229
Red clover ²	4	300*	50	265

UF/IFAS P and K Fertilizer Recommendations for Jiggs Bermudagrass	
- Maintenance Fertilization of Established Pastures: 80 lb N/A, all of the P ₂ O ₅ (80-60 lb P ₂ O ₅ /A), and 50% of the K ₂ O	
(40-20 lb K_2O/A) in early spring. Apply 80 lb N and the remaining K2O (40-20 lb K_2O/A) at mid-season	
- Hay production: 80 lb N/A and all of the recommended $\rm P_2O_5$ and $\rm K_2O$ in early	
spring. Apply an additional 80 lb N and 40 lb K_2O/A after each cutting, except the last in the fall. Include 20 lb of P_2O_5/A in the supplemental fertilizer if the soil tested low or medium in P.	-
4 cuts (assuming soil tested low in P and K): 240 lb/A of N, 100 lb/A of P ₂ O ₅ , and 160 lb/A of K ₂ O	
. 2 3 . 2	
	1
UF/IFAS P and K Fertilizer Recommendations for Limpograss	
- Maintenance Fertilization of Established Pastures: 60 lb N/A and all of the P_2O_5 (20 lb P_2O_5/A if soil tested low) and	
K ₂ O (40-20 K ₂ O/A) in late winter or early spring. Apply an additional 60 lb N in late summer or early fall. For a minimum fertilization alternative, ignore the P and K recommendation and	
apply only 60 lb N per year. Hay production:	
80 lb N/A and all of the recommended P_2O_5 and K_2O in late winter or early spring. Apply an additional 80 lb N and 40 lb $K_2O/$ A after each cutting, except the last in the fall. If the soil tested Low in P,	
then include 20 lb P_20_5/A in the supplemental fertilizer if the soil tested low or medium in P.	
4 cuts (assuming soil tested low in P and K): 240 lb/A of N, 40 lb/A of P ₂ O ₅ , and 120 lb/A of K ₂ O	
Objectives	
To evaluate Jiggs bermudagrass and limpograss responses to "minimum" potassium and phosphorus fertilization	-
Initial soil pH was 5.3 and M-1 extractable P, K, and Mg concentrations were 23, 12, and 293 lb/A, respectively. These levels are considered to be medium for P, very low for K, and very	
high for Mg.	
 Application levels: Potassium: 0, 40, and 80 lb K₂O/A (0, 50, and 100% recommended rates for established pastures) 	
- Phosphorus: 0, 20, and 40 lb ${ m P_2O_5/A}$ (0, 50, and 100% recommended rates)	
- 2 N levels (80 and 160 lb N/A)	

	2012	2013	2014	71-yr Average
January	0.47	0.5	3.72	2.1
February	0.39	0.7	1.31	2.5
March	0.25	0.7	3.12	3.1
April	2.46	3.6	1.11	2.5
May	1.41	1.8	5.87	3.7
June	9.41	9.7	6.54	8.6
July	7.52	10.4	8.38	8.3
August	6.6	7.4	3.75	8.4
September	7.19	7.3	11.64	7.3
October	5.09	0.5	0.82	3.0
November	0.54	0.9	4.18	1.9
December	1.17	0.1	0.25	2.0
Total	42.5	43.3	50.7	53.4


Annual K ₂ O application	Cumula	tive Dry Mat	ter Yield	
level	2012	2013	2014	
	lb,	/A		
0	4536	820	1124	
40	5719	1815	3959	44, 170, and 370% increases in DM yield in 2012, 2013, and
80	6517	2216	5357	2014, respectively
Orthogonal Contrast	Linear***	Linear**	Linear***	

Annual K ₂ O application	Cumula	tive Dry Mat	ter Yield	Frequency ²	Ground Cover ²	Crude Protein ³
level	2012	2013	2014			
	Ib,	/A			%	
0	4536	820	1124	37	31	15.2
40	5719	1815	3959	50	52	14.0
80	6517	2216	5357	54	54	13.7
Orthogonal Contrast	Linear***	Linear**	Linear***	Linear***	Linear***	Linear***

nnual K ₂ O	(Cumulative D	MY	
level	2012	2013	2014	
	It	/A		
0	12408	4189	8779	
40	11015	4921	10947	and 2014, respectively
80	12135	5798	12900	
Orthogonal	NS	Linear***	Linear ***	
Contrast				
Contrast	al (data not	181.0		

nnual K ₂ O		umulative D	MY	Frequency ¹	Ground	Crude
pplication level	2012	2013	2014	l.	Cover ¹	Protein ²
	Ib	/A			%%	
0	12408	4189	8779	60	65	6.7
40	11015	4921	10947	92	87	6.2
80	12135	5798	12900	94	89	6.1
Orthogonal Contrast	NS	Linear***	Linear ***	Linear **	Linear ***	Linear *

Conclusions

- K increased Jiggs bermudagrass and limpograss dry matter yield and decreased stand loss in the 3-yr study.
- Despite the positive effect of K, Jiggs bermudagrass dry matter yield observed in 2014 was significantly lower than those obtained in the first year of study and considerable stand losses and concomitant weed infestation occurred at the end of the study.
- Although the amounts of K exported via above-ground biomass were, in general, similar or less than those applied as fertilizer, K fertilization at the levels tested in this study were likely not sufficient to sustain the same level of production during the 3-yr study.

Conclusions

- Limpograss may require relatively lower levels of K fertilization than Jiggs bermudagrass to sustain production and stand persistence.
- No effect of P on Jiggs bermudagrass and limpograss responses were observed.

	il test interpretations used for a		
Nutrient	Low	Mehlich-3, mg kg 1 Medium	High
P	s25	26-45	>45
к	s35	36-60	>60
Mg	≤20	21-40	>40
e: Myłavarapu, Obreza, Mor	rgan, Hochmuth, Nair, and Wright	21–40 2014. Extraction of Soll Nutrients Using Mel and Agricultural Sciences. http://edis.ifas.uf	hlich-3 Reagent for Acid-Miner