

1

Schnitkey, G., N. Paulson, C. Zulauf and K. Swanson. 2021 Fertilizer price increases in perspective, with implications for 2022 costs. farmdoc daily (11):114, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign.

2

ECOSYSTEM SERVICES FOR LEGUME INCLUSION ON PASTURES

Aeschynomene americana L., also known as joint vetch, deer vetch, or shyleaf.

Annual, warm-season legume. Native from southern United States.

It prefers humid, light acidic to neutral soils (pH 5.5-7)

4

Previous studies have determined aeschynomene characteristics and performance:

	Only aeschynomene	Aeschynomene + Limpograss	Aeschynomene + Bahiagrass	Notes
References	Mislevy et al. 1981	Sollenberger et al. 1987	Kalmbacher et al. 1983	
Forage accumulation (ton/ha/year)	2.1 – 2.6	5.6	4.3	
Crude protein (%)	15 – 20	8	9.6	4% limpograss; 7% bahiagrass
Digestibility (%)	60 - 64	58	46.4	61% limpograss; 41% bahiagrass

5

Objective

To quantify the effect of aeschynomene overseeding and N fertilization on forage characteristics, N fixation and nitrous oxide emissions in bahiagrass pastures.

C

Experimental site

Range Cattle Research and Education Center. Ona FL.

Experimental period

April 2019 to October 2021

Soil characteristics

Soil series	Year	рН -	Р	K	Mg	Ca	CEC
				mg/kg			meq/100 g
Pomona	2019-2020	5.0	19	53	287	1811	9.8
fine sand	2020-2021	5.4	26	71	317	1566	9.2

7

8

- Treatments:

 1. Bahiagrass

 2. Bahiagrass and N fertilization

 3. Bahiagrass + Aeschynomene

 4. Bahiagrass + Aeschynomene and N fertilization

Legume seeding rate: 10 kg/ha of inoculated seed.

- 1 ton lime/ha before plots preparation
 13.2 and 25 kg/ha of P and K
 Treatment: 60 kg N/ha

FORAGE ACCUMULATION

10

11

NUTRITIVE VALUE

Plots maintained 47 – 50% digestibility, regardless any treatment.

Aeschynomene maintained 21% CP concentration, regardless the N fertilization.

N FIXATION

Accumulated N₂O emissions in bahiagrass – aeschynomene plots

- Bahiagrass alone:
- 2.2 kg N₂O-N/ha/year
- Bahiagrass + aeschynomene:
 2.8 kg N₂O-N/ha/year

- No fertilization:
 2.2 kg N₂O-N/ha/year
 Fertilized plots:
 2.7 kg N₂O-N/ha/year

19

CONCLUSIONS

- Overseeding aeschynomene into bahiagrass increased crude protein concentration of the pasture, causing no differences in forage yield.
- Aeschynomene was effective to fix biological N and the magnitude of the fixation was driven by herbage accumulation.
- Overseeding aeschynomene increased the same amount of $\rm N_2O/\rm year$ than $\rm N$ fertilization into bahiagrass pastures.

20

Thank you...

- 🍰 Jaime Garzón
- Range Cattle Research and Education Center, Ona FL
- E-mail: jgarzonalfonso@ufl.edu